Orbital Interactions between a C60 Molecule and Cu(111) Surface

Atsushi Ogawa, Masamitsu Tachibana, Masakazu Kondo, Kazunari Yoshizawa, Hiroshi Fujimoto, Roald Hoffmann

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

C-Cu orbital interactions between a two-layer Cu10 or three-layer Cu34 cluster model of a Cu(111) surface and an adsorbed single C60 molecule have been theoretically investigated, so as to elucidate the nature of the C60-Cu(111) bonding and orientational configuration of the C60 molecule on a Cu surface. Geometry optimizations and single-point calculations at the B3LYP/LanL2MB level of theory and fragment molecular orbital (FMO) analyses, coupled with a paired-interaction-orbital (PIO) scheme at the extended Hückel level of theory, have been performed for five symmetric adsorption models, in which a C60 molecule is attached to the Cu10 or Cu34 cluster respectively by a six-membered ring (6-ring), by a five-membered ring (5-ring), by a C-C bond belonging to two 6-rings (6-6 bond), by a C-C bond belonging to a 6-ring and a 5-ring (5-6 bond), and by an edge carbon atom that is located at the center of two 6-rings and a 5-ring. Large stabilization is obtained for adsorption by an edge carbon atom or a 6-6 bond, whereas the other coordination types are not favored. Our result differs from an XPD experimental result for a C60 monolayer on Cu(111), in which adsorption by a 6-ring is most favored. The discrepancy strongly suggests that C 60-C60 interactions contribute significantly to the determination of C60 orientations in C60/Cu(111) monolayer systems.

Original languageEnglish
Pages (from-to)12672-12679
Number of pages8
JournalJournal of Physical Chemistry B
Volume107
Issue number46
DOIs
Publication statusPublished - Nov 20 2003

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Orbital Interactions between a C<sub>60</sub> Molecule and Cu(111) Surface'. Together they form a unique fingerprint.

Cite this