## Abstract

The nematic-isotropic transition behavior of semiflexible polymers in the bulk was studied on the basis of three typical models of orientation-dependent interactions (the Onsager-Kimura-type mean-field model, the lattice version of the Onsager model, and the Maier-Saupe-type soft interaction model) and two polymer models (the wormlike chain and the freely jointed chain with randomly distributed joints). The critical value of x = q/D required to stabilize the nematic phase was evaluated as a function of m = L/q for various combinations of the models, where L, q, and D are the contour length, the persistence length, and the diameter, respectively, of the chain. Even though x and x_{∞}, the value of x at L → ∞, strongly depended on the models, the predicted ln(x/x_{∞}) vs m relations were reasonably model-insensitive, offering a hopefully quantitative interpretation for the known dependence of the transition temperature T_{i} on chain length. (Note that q and hence x is a function of temperature.) Like T_{i}, the enthalpy change of transition was predicted to increase with L, approaching a constant value for large L. This behavior originates in the conformational change of semiflexible polymers and is not a characteristic of rigid rodlike molecules.

Original language | English |
---|---|

Pages (from-to) | 3387-3393 |

Number of pages | 7 |

Journal | Macromolecules |

Volume | 28 |

Issue number | 9 |

DOIs | |

Publication status | Published - Apr 1 1995 |

Externally published | Yes |

## All Science Journal Classification (ASJC) codes

- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry