Overcoming synthetic metastabilities and revealing metal-To-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates

Jikun Chen, Haiyang Hu, Jiaou Wang, Takeaki Yajima, Binghui Ge, Xinyou Ke, Hongliang Dong, Yong Jiang, Nuofu Chen

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Effective synthesis of meta-stable materials challenging the thermodynamic limits will play a significant role in broadening the horizon in material designs and further explorations of their functionalities. Although d-band correlated rare-earth nickelate perovskites (ReNiO3) have achieved promising applications, e.g., metal-To-insulator transition, artificial intelligence, and memory/logical devices, the thermodynamic instability and high vacuum-dependence in material synthesis have largely caused bottlenecks in these applications. Herein we demonstrate a vacuum-free and low cost chemical route to effectively synthesize single-crystalline ReNiO3 thin films that further promote their device applications. It achieves high flexibility and convenience by adjusting the A-site compositions within the perovskites via single (i.e. Nd, Sm, Eu, and Gd), binary (i.e., Sm1-xNdx and Sm1-xEux) and triple (i.e. Sm1-x-yNdxEuy and Sm1-x-yNdxGdy) rare-earth elements. The respective regulations in electronic structures, as probed via near edge X-ray absorption fine structure analysis, result in sharper metal-To-insulator transitions within a broad temperature range of 400 K, compared with their reported performances. Furthermore, we discover an overlooked thermistor transport behavior of ReNiO3 within the binary A-site elements, which exhibits large temperature coefficients of resistance (>2%) across a broad range of temperatures (5-470 K). By overcoming the bottlenecks in material synthesis of ReNiO3, the present work profoundly paves the way for device fabrication.

Original languageEnglish
Pages (from-to)788-795
Number of pages8
JournalMaterials Horizons
Volume6
Issue number4
DOIs
Publication statusPublished - May 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Process Chemistry and Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Overcoming synthetic metastabilities and revealing metal-To-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates'. Together they form a unique fingerprint.

Cite this