Overdispersed molecular evolution in constant environments

Yoh Iwasa

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

According to recent data analysis of DNA sequences, the dispersion index, defined as the variance-to-mean ratio of the number of base substitutions in a lineage, is often much larger than unity, which is in conflict with simple Poisson processes assumed in the molecular clock hypothesis. In this paper, it will be shown that the dispersion index can be much larger than unity in a model in which the fitness of DNA sequences, mutation rate, and population size are all constant with time, and that moderately deleterious sequences are more abundant than the best fit sequences. Since the fixation probability of novel mutations depends on their fitness relative to the current sequence, the neutral mutation rate is enhanced once a deleterious mutation is fixed. In a simple case with two fitness classes, a large dispersion index can be produced by moderately deleterious mutations (3 < 4Ns < 6), but neither by nearly neutral (4Ns < 2) nor by strongly deleterious (4Ns > 7) mutations. Analysis of the case with 100 fitness classes shows that the dispersion index is insensitive to the population size, but greatly changes with the fitness distribution of DNA sequences. The model can explain why non-synonymous substitutions often have a larger dispersion index than synonymous substitutions.

Original languageEnglish
Pages (from-to)373-393
Number of pages21
JournalJournal of Theoretical Biology
Volume164
Issue number3
DOIs
Publication statusPublished - Jan 1 1993

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modelling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Overdispersed molecular evolution in constant environments'. Together they form a unique fingerprint.

  • Cite this