TY - JOUR
T1 - Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells
AU - Nishio, Masashi
AU - Fukumoto, Satoshi
AU - Furukawa, Keiko
AU - Ichimura, Akiko
AU - Miyazaki, Hiroshi
AU - Kusunoki, Susumu
AU - Urano, Takeshi
AU - Furukawa, Koichi
PY - 2004/8/6
Y1 - 2004/8/6
N2 - Ganglioside GM1 has been considered to have a neurotrophic factor-like activity. To analyze the effects of endogenously generated GM1, the rat pheochromocytoma cell line PC12 was transfected with the GM1/GD1b/GA1 synthase gene and showed increased expression levels of GM1. To our surprise, GM1 +-transfectant cells (GM1+ cells) showed no neurite formation after stimulation with nerve growth factor (NGF). Autophosphorylation of NGF receptor TrkA and activation of ERK1/2 after NGF treatment were scarcely detected in GM1+ cells. Binding of 125I-NGF to PC12 cells was almost equivalent between GM1+ cells and controls. However, dimer formation of TrkA upon NGF treatment was markedly suppressed in GM1+ cells in both cross-linking analysis with Bis(sulfosuccinimidyl)suberate 3 and 125I-NGF binding assay. The sucrose density gradient fractionation of the cell lysate revealed that TrkA primarily located in the lipid raft fraction moved to the non-raft fraction in GM1+ cells. p75NTR and Ras also moved from the raft to non-raft fraction in GM1+ cells, whereas flotillin and GM1 persistently resided in the lipid raft. TrkA kinase activity was differentially regulated when GM1 was added to the kinase assay system in vitro, suggesting suppressive/enhancing effects of GM1 on NGF signals based on the concentration. Measurement of fluorescence recovery after photobleaching revealed that the membrane fluidity was reduced in GM1 + cells. These results suggested that overexpressed GM1 suppresses the differentiation signals mediated by NGF/TrkA by modulating the properties of the lipid raft and the intracellular localization of NGF receptors and relevant signaling molecules.
AB - Ganglioside GM1 has been considered to have a neurotrophic factor-like activity. To analyze the effects of endogenously generated GM1, the rat pheochromocytoma cell line PC12 was transfected with the GM1/GD1b/GA1 synthase gene and showed increased expression levels of GM1. To our surprise, GM1 +-transfectant cells (GM1+ cells) showed no neurite formation after stimulation with nerve growth factor (NGF). Autophosphorylation of NGF receptor TrkA and activation of ERK1/2 after NGF treatment were scarcely detected in GM1+ cells. Binding of 125I-NGF to PC12 cells was almost equivalent between GM1+ cells and controls. However, dimer formation of TrkA upon NGF treatment was markedly suppressed in GM1+ cells in both cross-linking analysis with Bis(sulfosuccinimidyl)suberate 3 and 125I-NGF binding assay. The sucrose density gradient fractionation of the cell lysate revealed that TrkA primarily located in the lipid raft fraction moved to the non-raft fraction in GM1+ cells. p75NTR and Ras also moved from the raft to non-raft fraction in GM1+ cells, whereas flotillin and GM1 persistently resided in the lipid raft. TrkA kinase activity was differentially regulated when GM1 was added to the kinase assay system in vitro, suggesting suppressive/enhancing effects of GM1 on NGF signals based on the concentration. Measurement of fluorescence recovery after photobleaching revealed that the membrane fluidity was reduced in GM1 + cells. These results suggested that overexpressed GM1 suppresses the differentiation signals mediated by NGF/TrkA by modulating the properties of the lipid raft and the intracellular localization of NGF receptors and relevant signaling molecules.
UR - http://www.scopus.com/inward/record.url?scp=4043164892&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4043164892&partnerID=8YFLogxK
U2 - 10.1074/jbc.M403816200
DO - 10.1074/jbc.M403816200
M3 - Article
C2 - 15145933
AN - SCOPUS:4043164892
SN - 0021-9258
VL - 279
SP - 33368
EP - 33378
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 32
ER -