Overview of the Large Helical Device

A. Komori, H. Yamada, O. Kaneko, N. Ohyabu, K. Kawahata, R. Sakamoto, S. Sakakibara, N. Ashikawa, P. C. DeVries, M. Emoto, H. Funaba, M. Goto, K. Ida, Hiroshi Idei, K. Ikeda, Inagaki Shigeru, N. Inoue, M. Isobe, S. Kado, S. KuboR. Kumazawa, S. Masuzaki, T. Minami, J. Miyazawa, T. Morisaki, S. Morita, S. Murakami, S. Muto, T. Mutoh, Y. Nagayama, Y. Nakamura, H. Nakanishi, K. Narihara, K. Nishimura, N. Noda, T. Kobuchi, S. Ohdachi, Y. Oka, M. Osakabe, T. Ozaki, B. J. Peterson, K. Saito, A. Sagara, H. Sasao, M. Sasao, K. Sato, M. Sato, T. Seki, T. Shimozuma, M. Shoji, H. Suzuki, M. Takechi, Y. Takeiri, K. Tanaka, K. Toi, T. Tokuzawa, K. Tsumori, I. Yamada, S. Yamaguchi, S. Yamamoto, M. Yokoyama, Y. Yoshimura, K. Y. Watanabe, T. Watanabe, T. Watari, Y. Hamada, K. Itoh, K. Matsuoka, K. Murai, K. Ohkubo, I. Ohtake, M. Okamoto, S. Satoh, T. Satow, S. Sudo, S. Tanahashi, K. Yamazaki, O. Motojima, M. Fujiwara

Research output: Contribution to journalConference article

19 Citations (Scopus)

Abstract

The Large Helical Device (LHD) experiments have started after a construction period of eight years, and two experimental campaigns were performed in 1998. The magnetic field was raised up to 2.75 T at a magnetic axis position of 3.6. m at the end of the second campaign. In the third campaign, started in July in 1999, the plasma production with ECH of 0.9 MW and auxiliary heating with NBI of 3.5 MW have achieved an electron temperature of 3.5 keV and an ion temperature of 2.4 keV. The maximum stored energy has reached 0.75 MJ with an averaged electron density of 7.7×10 19 m -3 by hydrogen pellet injection. The ICRF heating has sustained the plasma for longer than 2 s and the initial stored energy of the NBI target plasma has increased from 0.27 MJ to 0.335 MJ. The major characteristic of the LHD plasma is the formation of the temperature pedestal, which leads to some enhancement of energy confinement over the ISS95 scaling law. The confinement characteristic is gyro-Bohm and the maximum energy confinement has reached 0.28 s. The LHD has also shown its high potentiality for steady-state operation by realizing a 22 s discharge in the second campaign.

Original languageEnglish
Pages (from-to)1165-1177
Number of pages13
JournalPlasma Physics and Controlled Fusion
Volume42
Issue number11
DOIs
Publication statusPublished - Nov 1 2000
Externally publishedYes
Event12th International Stellarator Workshop - Madison, WI, USA
Duration: Sep 27 1999Oct 1 1999

Fingerprint

Plasma devices
Plasmas
Heating
Plasma sources
Scaling laws
Electron temperature
Carrier concentration
Magnetic fields
Hydrogen
Temperature
heating
energy
Ions
ion temperature
pellets
scaling laws
Experiments
electron energy
injection
augmentation

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Condensed Matter Physics

Cite this

Komori, A., Yamada, H., Kaneko, O., Ohyabu, N., Kawahata, K., Sakamoto, R., ... Fujiwara, M. (2000). Overview of the Large Helical Device. Plasma Physics and Controlled Fusion, 42(11), 1165-1177. https://doi.org/10.1088/0741-3335/42/11/303

Overview of the Large Helical Device. / Komori, A.; Yamada, H.; Kaneko, O.; Ohyabu, N.; Kawahata, K.; Sakamoto, R.; Sakakibara, S.; Ashikawa, N.; DeVries, P. C.; Emoto, M.; Funaba, H.; Goto, M.; Ida, K.; Idei, Hiroshi; Ikeda, K.; Shigeru, Inagaki; Inoue, N.; Isobe, M.; Kado, S.; Kubo, S.; Kumazawa, R.; Masuzaki, S.; Minami, T.; Miyazawa, J.; Morisaki, T.; Morita, S.; Murakami, S.; Muto, S.; Mutoh, T.; Nagayama, Y.; Nakamura, Y.; Nakanishi, H.; Narihara, K.; Nishimura, K.; Noda, N.; Kobuchi, T.; Ohdachi, S.; Oka, Y.; Osakabe, M.; Ozaki, T.; Peterson, B. J.; Saito, K.; Sagara, A.; Sasao, H.; Sasao, M.; Sato, K.; Sato, M.; Seki, T.; Shimozuma, T.; Shoji, M.; Suzuki, H.; Takechi, M.; Takeiri, Y.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Tsumori, K.; Yamada, I.; Yamaguchi, S.; Yamamoto, S.; Yokoyama, M.; Yoshimura, Y.; Watanabe, K. Y.; Watanabe, T.; Watari, T.; Hamada, Y.; Itoh, K.; Matsuoka, K.; Murai, K.; Ohkubo, K.; Ohtake, I.; Okamoto, M.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Motojima, O.; Fujiwara, M.

In: Plasma Physics and Controlled Fusion, Vol. 42, No. 11, 01.11.2000, p. 1165-1177.

Research output: Contribution to journalConference article

Komori, A, Yamada, H, Kaneko, O, Ohyabu, N, Kawahata, K, Sakamoto, R, Sakakibara, S, Ashikawa, N, DeVries, PC, Emoto, M, Funaba, H, Goto, M, Ida, K, Idei, H, Ikeda, K, Shigeru, I, Inoue, N, Isobe, M, Kado, S, Kubo, S, Kumazawa, R, Masuzaki, S, Minami, T, Miyazawa, J, Morisaki, T, Morita, S, Murakami, S, Muto, S, Mutoh, T, Nagayama, Y, Nakamura, Y, Nakanishi, H, Narihara, K, Nishimura, K, Noda, N, Kobuchi, T, Ohdachi, S, Oka, Y, Osakabe, M, Ozaki, T, Peterson, BJ, Saito, K, Sagara, A, Sasao, H, Sasao, M, Sato, K, Sato, M, Seki, T, Shimozuma, T, Shoji, M, Suzuki, H, Takechi, M, Takeiri, Y, Tanaka, K, Toi, K, Tokuzawa, T, Tsumori, K, Yamada, I, Yamaguchi, S, Yamamoto, S, Yokoyama, M, Yoshimura, Y, Watanabe, KY, Watanabe, T, Watari, T, Hamada, Y, Itoh, K, Matsuoka, K, Murai, K, Ohkubo, K, Ohtake, I, Okamoto, M, Satoh, S, Satow, T, Sudo, S, Tanahashi, S, Yamazaki, K, Motojima, O & Fujiwara, M 2000, 'Overview of the Large Helical Device', Plasma Physics and Controlled Fusion, vol. 42, no. 11, pp. 1165-1177. https://doi.org/10.1088/0741-3335/42/11/303
Komori A, Yamada H, Kaneko O, Ohyabu N, Kawahata K, Sakamoto R et al. Overview of the Large Helical Device. Plasma Physics and Controlled Fusion. 2000 Nov 1;42(11):1165-1177. https://doi.org/10.1088/0741-3335/42/11/303
Komori, A. ; Yamada, H. ; Kaneko, O. ; Ohyabu, N. ; Kawahata, K. ; Sakamoto, R. ; Sakakibara, S. ; Ashikawa, N. ; DeVries, P. C. ; Emoto, M. ; Funaba, H. ; Goto, M. ; Ida, K. ; Idei, Hiroshi ; Ikeda, K. ; Shigeru, Inagaki ; Inoue, N. ; Isobe, M. ; Kado, S. ; Kubo, S. ; Kumazawa, R. ; Masuzaki, S. ; Minami, T. ; Miyazawa, J. ; Morisaki, T. ; Morita, S. ; Murakami, S. ; Muto, S. ; Mutoh, T. ; Nagayama, Y. ; Nakamura, Y. ; Nakanishi, H. ; Narihara, K. ; Nishimura, K. ; Noda, N. ; Kobuchi, T. ; Ohdachi, S. ; Oka, Y. ; Osakabe, M. ; Ozaki, T. ; Peterson, B. J. ; Saito, K. ; Sagara, A. ; Sasao, H. ; Sasao, M. ; Sato, K. ; Sato, M. ; Seki, T. ; Shimozuma, T. ; Shoji, M. ; Suzuki, H. ; Takechi, M. ; Takeiri, Y. ; Tanaka, K. ; Toi, K. ; Tokuzawa, T. ; Tsumori, K. ; Yamada, I. ; Yamaguchi, S. ; Yamamoto, S. ; Yokoyama, M. ; Yoshimura, Y. ; Watanabe, K. Y. ; Watanabe, T. ; Watari, T. ; Hamada, Y. ; Itoh, K. ; Matsuoka, K. ; Murai, K. ; Ohkubo, K. ; Ohtake, I. ; Okamoto, M. ; Satoh, S. ; Satow, T. ; Sudo, S. ; Tanahashi, S. ; Yamazaki, K. ; Motojima, O. ; Fujiwara, M. / Overview of the Large Helical Device. In: Plasma Physics and Controlled Fusion. 2000 ; Vol. 42, No. 11. pp. 1165-1177.
@article{1bea8d5a6a9c4e9f8fc8151c22dce566,
title = "Overview of the Large Helical Device",
abstract = "The Large Helical Device (LHD) experiments have started after a construction period of eight years, and two experimental campaigns were performed in 1998. The magnetic field was raised up to 2.75 T at a magnetic axis position of 3.6. m at the end of the second campaign. In the third campaign, started in July in 1999, the plasma production with ECH of 0.9 MW and auxiliary heating with NBI of 3.5 MW have achieved an electron temperature of 3.5 keV and an ion temperature of 2.4 keV. The maximum stored energy has reached 0.75 MJ with an averaged electron density of 7.7×10 19 m -3 by hydrogen pellet injection. The ICRF heating has sustained the plasma for longer than 2 s and the initial stored energy of the NBI target plasma has increased from 0.27 MJ to 0.335 MJ. The major characteristic of the LHD plasma is the formation of the temperature pedestal, which leads to some enhancement of energy confinement over the ISS95 scaling law. The confinement characteristic is gyro-Bohm and the maximum energy confinement has reached 0.28 s. The LHD has also shown its high potentiality for steady-state operation by realizing a 22 s discharge in the second campaign.",
author = "A. Komori and H. Yamada and O. Kaneko and N. Ohyabu and K. Kawahata and R. Sakamoto and S. Sakakibara and N. Ashikawa and DeVries, {P. C.} and M. Emoto and H. Funaba and M. Goto and K. Ida and Hiroshi Idei and K. Ikeda and Inagaki Shigeru and N. Inoue and M. Isobe and S. Kado and S. Kubo and R. Kumazawa and S. Masuzaki and T. Minami and J. Miyazawa and T. Morisaki and S. Morita and S. Murakami and S. Muto and T. Mutoh and Y. Nagayama and Y. Nakamura and H. Nakanishi and K. Narihara and K. Nishimura and N. Noda and T. Kobuchi and S. Ohdachi and Y. Oka and M. Osakabe and T. Ozaki and Peterson, {B. J.} and K. Saito and A. Sagara and H. Sasao and M. Sasao and K. Sato and M. Sato and T. Seki and T. Shimozuma and M. Shoji and H. Suzuki and M. Takechi and Y. Takeiri and K. Tanaka and K. Toi and T. Tokuzawa and K. Tsumori and I. Yamada and S. Yamaguchi and S. Yamamoto and M. Yokoyama and Y. Yoshimura and Watanabe, {K. Y.} and T. Watanabe and T. Watari and Y. Hamada and K. Itoh and K. Matsuoka and K. Murai and K. Ohkubo and I. Ohtake and M. Okamoto and S. Satoh and T. Satow and S. Sudo and S. Tanahashi and K. Yamazaki and O. Motojima and M. Fujiwara",
year = "2000",
month = "11",
day = "1",
doi = "10.1088/0741-3335/42/11/303",
language = "English",
volume = "42",
pages = "1165--1177",
journal = "Plasma Physics and Controlled Fusion",
issn = "0741-3335",
publisher = "IOP Publishing Ltd.",
number = "11",

}

TY - JOUR

T1 - Overview of the Large Helical Device

AU - Komori, A.

AU - Yamada, H.

AU - Kaneko, O.

AU - Ohyabu, N.

AU - Kawahata, K.

AU - Sakamoto, R.

AU - Sakakibara, S.

AU - Ashikawa, N.

AU - DeVries, P. C.

AU - Emoto, M.

AU - Funaba, H.

AU - Goto, M.

AU - Ida, K.

AU - Idei, Hiroshi

AU - Ikeda, K.

AU - Shigeru, Inagaki

AU - Inoue, N.

AU - Isobe, M.

AU - Kado, S.

AU - Kubo, S.

AU - Kumazawa, R.

AU - Masuzaki, S.

AU - Minami, T.

AU - Miyazawa, J.

AU - Morisaki, T.

AU - Morita, S.

AU - Murakami, S.

AU - Muto, S.

AU - Mutoh, T.

AU - Nagayama, Y.

AU - Nakamura, Y.

AU - Nakanishi, H.

AU - Narihara, K.

AU - Nishimura, K.

AU - Noda, N.

AU - Kobuchi, T.

AU - Ohdachi, S.

AU - Oka, Y.

AU - Osakabe, M.

AU - Ozaki, T.

AU - Peterson, B. J.

AU - Saito, K.

AU - Sagara, A.

AU - Sasao, H.

AU - Sasao, M.

AU - Sato, K.

AU - Sato, M.

AU - Seki, T.

AU - Shimozuma, T.

AU - Shoji, M.

AU - Suzuki, H.

AU - Takechi, M.

AU - Takeiri, Y.

AU - Tanaka, K.

AU - Toi, K.

AU - Tokuzawa, T.

AU - Tsumori, K.

AU - Yamada, I.

AU - Yamaguchi, S.

AU - Yamamoto, S.

AU - Yokoyama, M.

AU - Yoshimura, Y.

AU - Watanabe, K. Y.

AU - Watanabe, T.

AU - Watari, T.

AU - Hamada, Y.

AU - Itoh, K.

AU - Matsuoka, K.

AU - Murai, K.

AU - Ohkubo, K.

AU - Ohtake, I.

AU - Okamoto, M.

AU - Satoh, S.

AU - Satow, T.

AU - Sudo, S.

AU - Tanahashi, S.

AU - Yamazaki, K.

AU - Motojima, O.

AU - Fujiwara, M.

PY - 2000/11/1

Y1 - 2000/11/1

N2 - The Large Helical Device (LHD) experiments have started after a construction period of eight years, and two experimental campaigns were performed in 1998. The magnetic field was raised up to 2.75 T at a magnetic axis position of 3.6. m at the end of the second campaign. In the third campaign, started in July in 1999, the plasma production with ECH of 0.9 MW and auxiliary heating with NBI of 3.5 MW have achieved an electron temperature of 3.5 keV and an ion temperature of 2.4 keV. The maximum stored energy has reached 0.75 MJ with an averaged electron density of 7.7×10 19 m -3 by hydrogen pellet injection. The ICRF heating has sustained the plasma for longer than 2 s and the initial stored energy of the NBI target plasma has increased from 0.27 MJ to 0.335 MJ. The major characteristic of the LHD plasma is the formation of the temperature pedestal, which leads to some enhancement of energy confinement over the ISS95 scaling law. The confinement characteristic is gyro-Bohm and the maximum energy confinement has reached 0.28 s. The LHD has also shown its high potentiality for steady-state operation by realizing a 22 s discharge in the second campaign.

AB - The Large Helical Device (LHD) experiments have started after a construction period of eight years, and two experimental campaigns were performed in 1998. The magnetic field was raised up to 2.75 T at a magnetic axis position of 3.6. m at the end of the second campaign. In the third campaign, started in July in 1999, the plasma production with ECH of 0.9 MW and auxiliary heating with NBI of 3.5 MW have achieved an electron temperature of 3.5 keV and an ion temperature of 2.4 keV. The maximum stored energy has reached 0.75 MJ with an averaged electron density of 7.7×10 19 m -3 by hydrogen pellet injection. The ICRF heating has sustained the plasma for longer than 2 s and the initial stored energy of the NBI target plasma has increased from 0.27 MJ to 0.335 MJ. The major characteristic of the LHD plasma is the formation of the temperature pedestal, which leads to some enhancement of energy confinement over the ISS95 scaling law. The confinement characteristic is gyro-Bohm and the maximum energy confinement has reached 0.28 s. The LHD has also shown its high potentiality for steady-state operation by realizing a 22 s discharge in the second campaign.

UR - http://www.scopus.com/inward/record.url?scp=0034318785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034318785&partnerID=8YFLogxK

U2 - 10.1088/0741-3335/42/11/303

DO - 10.1088/0741-3335/42/11/303

M3 - Conference article

AN - SCOPUS:0034318785

VL - 42

SP - 1165

EP - 1177

JO - Plasma Physics and Controlled Fusion

JF - Plasma Physics and Controlled Fusion

SN - 0741-3335

IS - 11

ER -