Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe 1-yZr yO 3-δ

Ken Watanabe, Daisuke Takauchi, Masayoshi Yuasa, Tetsuya Kida, Kengo Shimanoe, Yasutake Teraoka, Noboru Yamazoe

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

Partially Zr-substituted BaFe 1-yZr yO 3-δ membranes were developed as a Co-free oxygen permeable membrane. In order to stabilize the cubic perovskite structure, Fe sites in BaFeO 3-δ were partially substituted with Zr 4+. In the substitution range of y=0.01-0.1, the cubic perovskite structure was stabilized even at room temperature. Among the membranes prepared, a BaFe 0.975Zr 0.025O3 material (y=0.025) showed the highest oxygen permeation flux of 1.30 cm3 (standard temperature pressure) min-1 cm-2 at 930°C under an air/He gradient. The oxygen permeation flux was higher than that of partially Ce-substituted BaFe 1-yCe yO 3-δ membranes reported previously. From the results obtained by chemical and scanning electron microscope analyses, it appears that the oxygen permeability for BaFe 1-yZr yO 3-δ membranes was well correlated with the amount of oxygen defects in the lattice as well as the grain size. In addition, the oxygen permeation flux of the BaFe 0.975Zr 0.025O3 membrane was significantly increased after decreasing the thickness of the membrane from 2.0 to 0.4 mm. For thin membranes (0.4-1.0 mm), the thickness dependence of the oxygen permeability deviated from the Wagner equation, suggesting that the oxygen permeation of BaFe 0.975Zr 0.025O3 is controlled by not only bulk diffusion of oxide ions but also their surface reactions.

Original languageEnglish
JournalJournal of the Electrochemical Society
Volume156
Issue number5
DOIs
Publication statusPublished - Apr 8 2009

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe <sub>1-y</sub>Zr <sub>y</sub>O <sub>3-δ</sub>'. Together they form a unique fingerprint.

  • Cite this