Abstract
The room-temperature oxidation of CO using ozone-assisted catalysis (OAC) over monometallic or bimetallic catalysts supported on γ-Al2O3 is presented. Within the tested particle size range, ozone decomposition was insensitive to the size of the Ag particles (6.6–11.9 nm) at weight hourly space velocities of up to 360 L·g−1·h−1. Among the tested monometallic catalysts (Ag Pd, Fe, Mn, and Cu), Ag showed the highest activity for CO oxidation. Bimetallic catalysts (Ag-M or Pd-M where M = Cu, La, Ru, and Fe) were also considered by adding a second metal or perovskite oxide (LaFeO3) to Ag. A cooperative effect was observed with the bimetallic Ag-Pd catalyst for the OAC of CO oxidation at room temperature, whereas the other bimetallic catalysts showed slightly lower performance compared to the monometallic catalyst. A high ozone utilization efficiency of 0.94 was achieved with the bimetallic Ag-Pd/γ-Al2O3 catalyst. High-angle annular dark-field scanning tunneling electron microscopy (HAADF) and energy dispersive X-ray (EDX) spectroscopy measurements confirmed the proximity of the two components, which is essential for their interaction. The in situ FTIR measurements revealed that the cooperative effect in the bimetallic Ag-Pd catalyst involved modification of CO adsorption and the suppression of product accumulation. Two typical IR absorption bands of linear- (2090 cm−1) and bridge-CO (1918 cm−1) on Pd disappeared in the presence of Ag nanoparticles. Thus, the presence of Ag in contact with Pd inhibited the accumulation of carbonates, which led to enhanced catalytic performance. Adsorption site-dependent CO oxidation on Pd was also confirmed by the in situ Fourier transform IR measurement.
Language | English |
---|---|
Pages | 380-389 |
Number of pages | 10 |
Journal | Chemical Engineering Journal |
Volume | 355 |
DOIs | |
Publication status | Published - Jan 1 2019 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering
Cite this
Ozone-assisted catalysis of CO : In situ Fourier transform IR evidence of the cooperative effect of a bimetallic Ag-Pd catalyst. / Tou, Akihiro; Kim, Hyun Ha; Einaga, Hisahiro; Teramoto, Yoshiyuki; Ogata, Atsushi.
In: Chemical Engineering Journal, Vol. 355, 01.01.2019, p. 380-389.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Ozone-assisted catalysis of CO
T2 - Chemical Engineering Journal
AU - Tou, Akihiro
AU - Kim, Hyun Ha
AU - Einaga, Hisahiro
AU - Teramoto, Yoshiyuki
AU - Ogata, Atsushi
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The room-temperature oxidation of CO using ozone-assisted catalysis (OAC) over monometallic or bimetallic catalysts supported on γ-Al2O3 is presented. Within the tested particle size range, ozone decomposition was insensitive to the size of the Ag particles (6.6–11.9 nm) at weight hourly space velocities of up to 360 L·g−1·h−1. Among the tested monometallic catalysts (Ag Pd, Fe, Mn, and Cu), Ag showed the highest activity for CO oxidation. Bimetallic catalysts (Ag-M or Pd-M where M = Cu, La, Ru, and Fe) were also considered by adding a second metal or perovskite oxide (LaFeO3) to Ag. A cooperative effect was observed with the bimetallic Ag-Pd catalyst for the OAC of CO oxidation at room temperature, whereas the other bimetallic catalysts showed slightly lower performance compared to the monometallic catalyst. A high ozone utilization efficiency of 0.94 was achieved with the bimetallic Ag-Pd/γ-Al2O3 catalyst. High-angle annular dark-field scanning tunneling electron microscopy (HAADF) and energy dispersive X-ray (EDX) spectroscopy measurements confirmed the proximity of the two components, which is essential for their interaction. The in situ FTIR measurements revealed that the cooperative effect in the bimetallic Ag-Pd catalyst involved modification of CO adsorption and the suppression of product accumulation. Two typical IR absorption bands of linear- (2090 cm−1) and bridge-CO (1918 cm−1) on Pd disappeared in the presence of Ag nanoparticles. Thus, the presence of Ag in contact with Pd inhibited the accumulation of carbonates, which led to enhanced catalytic performance. Adsorption site-dependent CO oxidation on Pd was also confirmed by the in situ Fourier transform IR measurement.
AB - The room-temperature oxidation of CO using ozone-assisted catalysis (OAC) over monometallic or bimetallic catalysts supported on γ-Al2O3 is presented. Within the tested particle size range, ozone decomposition was insensitive to the size of the Ag particles (6.6–11.9 nm) at weight hourly space velocities of up to 360 L·g−1·h−1. Among the tested monometallic catalysts (Ag Pd, Fe, Mn, and Cu), Ag showed the highest activity for CO oxidation. Bimetallic catalysts (Ag-M or Pd-M where M = Cu, La, Ru, and Fe) were also considered by adding a second metal or perovskite oxide (LaFeO3) to Ag. A cooperative effect was observed with the bimetallic Ag-Pd catalyst for the OAC of CO oxidation at room temperature, whereas the other bimetallic catalysts showed slightly lower performance compared to the monometallic catalyst. A high ozone utilization efficiency of 0.94 was achieved with the bimetallic Ag-Pd/γ-Al2O3 catalyst. High-angle annular dark-field scanning tunneling electron microscopy (HAADF) and energy dispersive X-ray (EDX) spectroscopy measurements confirmed the proximity of the two components, which is essential for their interaction. The in situ FTIR measurements revealed that the cooperative effect in the bimetallic Ag-Pd catalyst involved modification of CO adsorption and the suppression of product accumulation. Two typical IR absorption bands of linear- (2090 cm−1) and bridge-CO (1918 cm−1) on Pd disappeared in the presence of Ag nanoparticles. Thus, the presence of Ag in contact with Pd inhibited the accumulation of carbonates, which led to enhanced catalytic performance. Adsorption site-dependent CO oxidation on Pd was also confirmed by the in situ Fourier transform IR measurement.
UR - http://www.scopus.com/inward/record.url?scp=85052507404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052507404&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2018.08.159
DO - 10.1016/j.cej.2018.08.159
M3 - Article
VL - 355
SP - 380
EP - 389
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
SN - 1385-8947
ER -