Parameters influencing steady-state grain size of pure metals processed by high-pressure torsion

Kaveh Edalati, Zenji Horita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

High purity elements such as magnesium, aluminum, silicon, titanium, vanadium, iron, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, indium, tin, hafnium, gold and lead were processed by high-pressure torsion and subsequently evaluated by microstructural examinations and Vickers microhardness measurement. The grain size at the steady state, where the grain size and hardness remain unchanged with straining, was determined using either transmission electron microscopy, electron back-scatter diffraction analysis and/or optical microscopy. It is found that the steady state grain sizes are at the submicrometer level in elements with metallic bonding and at the nanometer level in elements with covalent bonding. The correlations between the steady-state grain size and the physical properties of metals are examined and it is found that the atomic bond energy and the homologous temperature are important parameters influencing the steady-state grain size after processing by HPT. A linear correlation between the hardness and grain size at the steady state is achieved by plotting the hardness normalized by the shear modulus against the grain size normalized by the Burgers vector in the logarithmic scale.

Original languageEnglish
Title of host publicationTHERMEC 2011
PublisherTrans Tech Publications Ltd
Pages3034-3039
Number of pages6
ISBN (Print)9783037853030
DOIs
Publication statusPublished - 2012
Event7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011 - Quebec City, QC, Canada
Duration: Aug 1 2011Aug 5 2011

Publication series

NameMaterials Science Forum
Volume706-709
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011
Country/TerritoryCanada
CityQuebec City, QC
Period8/1/118/5/11

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Parameters influencing steady-state grain size of pure metals processed by high-pressure torsion'. Together they form a unique fingerprint.

Cite this