Percolative transition and scaling of transport E-J characteristics in YBCO coated IBAD tape

T. Kiss, M. Inoue, S. Egashira, T. Kuga, M. Ishimaru, M. Takeo, T. Matsushita, Y. Iijima, K. Kakimoto, T. Saitoh, S. Awaji, K. Watanabe, Y. Shiohara

Research output: Contribution to journalConference articlepeer-review

10 Citations (Scopus)


We have investigated extended electric field-vs.-current density E-J characteristics in YBCO coated IBAD tapes. The results of a Monte-Carlo study on the depinning in a random pin medium were compared with measurements. Using a low temperature scanning laser microscope, we examined the percolative behavior of the local resistive transition in the YBCO tape. It was also shown that the depinning probability, which is proportional to the dynamic resistance of the E-J curves, is scaled as a function of reduced current density with the aid of a power index. Consequently, the E-J characteristics in the tapes can be described by the combination of the two kinds of scaling laws: one is the scaling law of the depinning probability predicted in a random network and the other is the scaling law for the flux pinning force. These properties agree well with the percolation model of depinned clusters.

Original languageEnglish
Pages (from-to)2607-2610
Number of pages4
JournalIEEE Transactions on Applied Superconductivity
Issue number2 III
Publication statusPublished - Jun 2003
Event2002 Applied Superconductivity Conference - Houston, TX, United States
Duration: Aug 4 2002Aug 9 2002

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Percolative transition and scaling of transport E-J characteristics in YBCO coated IBAD tape'. Together they form a unique fingerprint.

Cite this