Performance and Durability of One-Cell Module of Biogas-Utilizing SOFC Equipped with Graded Indirect Internal Reformer

Ozgür Aydin, Go Matsumoto, Atsushi Kubota, Dang Long Tran, Mio Sakamoto, Yusuke Shiratori

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Utilization of biogas in Solid Oxide Fuel Cells (SOFCs) is an efficient way of renewable power generation. Despite some technical challenges, biogas can be reformed to H 2-rich fuel stream in the anodes of SOFCs. However, the reforming rate drastically drops toward the outlet of the flow field due to the rapid conversion of CH4 (biogas) in the inlet region. As the reforming reactions are endothermic, they cause large temperature gradients along the flow field, so that thermal stresses arise on the SOFC components. This problem can be resolved to an extent via taking the reforming reactions out of the SOFC domain (Indirect Internal Reforming), which however makes the heat transfer from SOFCs to the reforming domain also indirect. From the point of effective thermal integration, this study introduces an innovative indirect internal reforming concept. For totally eliminating the thermal stresses, it is necessary to homogenize the reforming rate, which can be achieved by designing a graded reforming domain. In this paper, we investigate the electrochemical performance and durability of an indirect internal reforming SOFC module featuring a graded reforming domain.

Original languageEnglish
Article number064512
JournalJournal of the Electrochemical Society
Volume167
Issue number6
DOIs
Publication statusPublished - Jan 4 2020

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Performance and Durability of One-Cell Module of Biogas-Utilizing SOFC Equipped with Graded Indirect Internal Reformer'. Together they form a unique fingerprint.

  • Cite this