Abstract
A superconducting transition edge thermosensor (TES) microcalorimeter was cooled by a compact liquid-helium-free 3He-4He dilution refrigerator with loading a Gifford-McMahon (GM) cooler for detection of LX-ray photons emitted from an 241Am source. The first and second stages of the GM cooler are directly coupled with the first and the second precool heat exchangers of a stick shaped dilution unit through copper plates in the vacuum chamber, respectively. The circulating 3He-4He gas through the precooled heat exchangers is condensed into a liquid of condense mixture by the isoenthalpic expansion through the Joule-Thomson impedance. A cascade of two mixing chambers are employed for achieving sufficient cooling power. The helium-free dilution refrigerator performs the cooling power of 20 μW at 100 mK. The TES and SQUID chips suffered from mechanical vibrations induced by a reciprocating motion of the displacer of the GM cooler. Detection signals of LX-ray photons emitted from 241Am source were observed by operating the TES microcalorimeter in severe noise environment induced by mechanical vibrations.
Original language | English |
---|---|
Article number | 012051 |
Journal | Journal of Physics: Conference Series |
Volume | 150 |
DOIs | |
Publication status | Published - 2009 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)