pH-selective synthesis and structures of alkynyl, acyl, and ketonyl intermediates in anti-markovnikov and markovnikov hydrations of a terminal alkyne with a water-soluble iridium aqua complex in water

Seiji Ogo, Keiji Uehara, Tsutomu Abura, Yoshihito Watanabe, Shunichi Fukuzumi

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

Chemoselective synthesis and isolation of alkynyl [Cp*Ir III(bpy)CCPh]+ (2, Cp* = η5-C 5Me5, bpy = 2,2′-bipyridine), acyl [Cp*Ir III(bPy)C(O)CH2Ph]+ (3), and ketonyl [Cp*IrIII(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*IrIII(bpy)(H2O)] 2+ (1) used as the same starting complex. The alkynyl complex [2]2·SO4 was synthesized at pH 8 in the reaction of 1·SO4 with H2O at 25 °C, and was isolated as a yellow powder of 2·X (X = CF3SO3 or PF 6) by exchanging the counteranion at pH 8. The acyl complex [3] 2·SO4 was synthesized by changing the pH of the aqueous solution of [2]2·SO4 from 8 to 1 at 25°C, and was isolated as a red powder of 3·PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1·SO4 at pH 4 at 25°C gave a mixture of [4] 2·SO4 and [4]2·SO4. After the counteranion was exchanged from SO42- to CF 3SO3-, the ketonyl complex 4·CF 3SO3 was separated from the mixture of 2·CF 3SO3 and 4·CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph 12C≡13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2·PF6 and 3·PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H 218O.

Original languageEnglish
Pages (from-to)16520-16527
Number of pages8
JournalJournal of the American Chemical Society
Volume126
Issue number50
DOIs
Publication statusPublished - Dec 22 2004
Externally publishedYes

Fingerprint

Iridium
Alkynes
Hydration
Powders
Water
Electrospray ionization
Protonation
X ray analysis
Ketones
Aldehydes
Labeling
Mass spectrometry
Solubility
Experiments
Ligands
Nuclear magnetic resonance
Spectroscopy
Polarization
phenylacetylene
Electrospray Ionization Mass Spectrometry

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Biochemistry
  • Chemistry(all)
  • Colloid and Surface Chemistry

Cite this

pH-selective synthesis and structures of alkynyl, acyl, and ketonyl intermediates in anti-markovnikov and markovnikov hydrations of a terminal alkyne with a water-soluble iridium aqua complex in water. / Ogo, Seiji; Uehara, Keiji; Abura, Tsutomu; Watanabe, Yoshihito; Fukuzumi, Shunichi.

In: Journal of the American Chemical Society, Vol. 126, No. 50, 22.12.2004, p. 16520-16527.

Research output: Contribution to journalArticle

@article{f0a767d18c4c42b69c959ed824c41705,
title = "pH-selective synthesis and structures of alkynyl, acyl, and ketonyl intermediates in anti-markovnikov and markovnikov hydrations of a terminal alkyne with a water-soluble iridium aqua complex in water",
abstract = "Chemoselective synthesis and isolation of alkynyl [Cp*Ir III(bpy)CCPh]+ (2, Cp* = η5-C 5Me5, bpy = 2,2′-bipyridine), acyl [Cp*Ir III(bPy)C(O)CH2Ph]+ (3), and ketonyl [Cp*IrIII(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*IrIII(bpy)(H2O)] 2+ (1) used as the same starting complex. The alkynyl complex [2]2·SO4 was synthesized at pH 8 in the reaction of 1·SO4 with H2O at 25 °C, and was isolated as a yellow powder of 2·X (X = CF3SO3 or PF 6) by exchanging the counteranion at pH 8. The acyl complex [3] 2·SO4 was synthesized by changing the pH of the aqueous solution of [2]2·SO4 from 8 to 1 at 25°C, and was isolated as a red powder of 3·PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1·SO4 at pH 4 at 25°C gave a mixture of [4] 2·SO4 and [4]2·SO4. After the counteranion was exchanged from SO42- to CF 3SO3-, the ketonyl complex 4·CF 3SO3 was separated from the mixture of 2·CF 3SO3 and 4·CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph 12C≡13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2·PF6 and 3·PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H 218O.",
author = "Seiji Ogo and Keiji Uehara and Tsutomu Abura and Yoshihito Watanabe and Shunichi Fukuzumi",
year = "2004",
month = "12",
day = "22",
doi = "10.1021/ja0473541",
language = "English",
volume = "126",
pages = "16520--16527",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "50",

}

TY - JOUR

T1 - pH-selective synthesis and structures of alkynyl, acyl, and ketonyl intermediates in anti-markovnikov and markovnikov hydrations of a terminal alkyne with a water-soluble iridium aqua complex in water

AU - Ogo, Seiji

AU - Uehara, Keiji

AU - Abura, Tsutomu

AU - Watanabe, Yoshihito

AU - Fukuzumi, Shunichi

PY - 2004/12/22

Y1 - 2004/12/22

N2 - Chemoselective synthesis and isolation of alkynyl [Cp*Ir III(bpy)CCPh]+ (2, Cp* = η5-C 5Me5, bpy = 2,2′-bipyridine), acyl [Cp*Ir III(bPy)C(O)CH2Ph]+ (3), and ketonyl [Cp*IrIII(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*IrIII(bpy)(H2O)] 2+ (1) used as the same starting complex. The alkynyl complex [2]2·SO4 was synthesized at pH 8 in the reaction of 1·SO4 with H2O at 25 °C, and was isolated as a yellow powder of 2·X (X = CF3SO3 or PF 6) by exchanging the counteranion at pH 8. The acyl complex [3] 2·SO4 was synthesized by changing the pH of the aqueous solution of [2]2·SO4 from 8 to 1 at 25°C, and was isolated as a red powder of 3·PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1·SO4 at pH 4 at 25°C gave a mixture of [4] 2·SO4 and [4]2·SO4. After the counteranion was exchanged from SO42- to CF 3SO3-, the ketonyl complex 4·CF 3SO3 was separated from the mixture of 2·CF 3SO3 and 4·CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph 12C≡13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2·PF6 and 3·PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H 218O.

AB - Chemoselective synthesis and isolation of alkynyl [Cp*Ir III(bpy)CCPh]+ (2, Cp* = η5-C 5Me5, bpy = 2,2′-bipyridine), acyl [Cp*Ir III(bPy)C(O)CH2Ph]+ (3), and ketonyl [Cp*IrIII(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*IrIII(bpy)(H2O)] 2+ (1) used as the same starting complex. The alkynyl complex [2]2·SO4 was synthesized at pH 8 in the reaction of 1·SO4 with H2O at 25 °C, and was isolated as a yellow powder of 2·X (X = CF3SO3 or PF 6) by exchanging the counteranion at pH 8. The acyl complex [3] 2·SO4 was synthesized by changing the pH of the aqueous solution of [2]2·SO4 from 8 to 1 at 25°C, and was isolated as a red powder of 3·PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1·SO4 at pH 4 at 25°C gave a mixture of [4] 2·SO4 and [4]2·SO4. After the counteranion was exchanged from SO42- to CF 3SO3-, the ketonyl complex 4·CF 3SO3 was separated from the mixture of 2·CF 3SO3 and 4·CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph 12C≡13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2·PF6 and 3·PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H 218O.

UR - http://www.scopus.com/inward/record.url?scp=11444269941&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=11444269941&partnerID=8YFLogxK

U2 - 10.1021/ja0473541

DO - 10.1021/ja0473541

M3 - Article

VL - 126

SP - 16520

EP - 16527

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 50

ER -