TY - JOUR
T1 - Phosphatidylserine-containing liposomes inhibit the differentiation of osteoclasts and trabecular bone loss
AU - Wu, Zhou
AU - Ma, Hong Mei
AU - Kukita, Toshio
AU - Nakanishi, Yoshinobu
AU - Nakanishi, Hiroshi
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010/3/15
Y1 - 2010/3/15
N2 - Liposomes containing phosphatidylserine (PS) are engulfed by phagocytes including macrophages, microglia, and dendritic cells. PS liposomes (PSLs) mimic the effects of apoptotic cells on these phagocytes to induce the secretion of anti-inflammatory molecules and to inhibit the maturation of dendritic cells. However, the effects of PSLs on osteoclasts, which are also differentiated from the common myeloid precursors, remain to be determined. This study investigated the effects of PSLs on the osteoclastogenesis. In the rat bone marrow culture system, osteoclast precursors phagocytosed PSLs to secrete TGF-β1 and PGE2, which in turn inhibited osteoclastogenesis through the downregulation of receptor activator for NF-κB ligand, receptor activator of NF-κB, ICAM-1, and CD44. Consistent with these in vitro observations, i.m. injection of PSLs significantly increased the plasma level of TGF-β1 and PGE2 and decreased the expression of receptor activator for NF-κB ligand, receptor activator of NF-κB, and ICAM-1 in the skeletal tissues of ankle joints of rats with adjuvant arthritis (AA). A quantitative analysis using microcomputed tomography revealed that PSLs as well as TGF-β1 together with PGE2 significantly inhibited AA-induced trabecular bone loss. These observations strongly suggest that PSLs generate TGF-β1 and PGE2 release, leading to inhibit osteoclastogenesis and AA-induced trabecular bone loss. Because PS is a component of the cell membrane, PSLs therefore can be a potentially effective pharmacological intervention against abnormal bone loss, such as osteoporosis without deleterious side effects.
AB - Liposomes containing phosphatidylserine (PS) are engulfed by phagocytes including macrophages, microglia, and dendritic cells. PS liposomes (PSLs) mimic the effects of apoptotic cells on these phagocytes to induce the secretion of anti-inflammatory molecules and to inhibit the maturation of dendritic cells. However, the effects of PSLs on osteoclasts, which are also differentiated from the common myeloid precursors, remain to be determined. This study investigated the effects of PSLs on the osteoclastogenesis. In the rat bone marrow culture system, osteoclast precursors phagocytosed PSLs to secrete TGF-β1 and PGE2, which in turn inhibited osteoclastogenesis through the downregulation of receptor activator for NF-κB ligand, receptor activator of NF-κB, ICAM-1, and CD44. Consistent with these in vitro observations, i.m. injection of PSLs significantly increased the plasma level of TGF-β1 and PGE2 and decreased the expression of receptor activator for NF-κB ligand, receptor activator of NF-κB, and ICAM-1 in the skeletal tissues of ankle joints of rats with adjuvant arthritis (AA). A quantitative analysis using microcomputed tomography revealed that PSLs as well as TGF-β1 together with PGE2 significantly inhibited AA-induced trabecular bone loss. These observations strongly suggest that PSLs generate TGF-β1 and PGE2 release, leading to inhibit osteoclastogenesis and AA-induced trabecular bone loss. Because PS is a component of the cell membrane, PSLs therefore can be a potentially effective pharmacological intervention against abnormal bone loss, such as osteoporosis without deleterious side effects.
UR - http://www.scopus.com/inward/record.url?scp=77951882379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951882379&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.0803609
DO - 10.4049/jimmunol.0803609
M3 - Article
C2 - 20176740
AN - SCOPUS:77951882379
SN - 0022-1767
VL - 184
SP - 3191
EP - 3201
JO - Journal of Immunology
JF - Journal of Immunology
IS - 6
ER -