Phosphorus concentration dependent microstructure and optical property of zno nanowires grown by high-pressure pulsed laser deposition

Zhiwen Qiu, Haibo Gong, Xiaopeng Yang, Zichao Zhang, Jun Han, Bingqiang Cao, Daisuke Nakamura, Tatsuo Okada

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Phosphorus-doped ZnO (ZnO:P) nanowires were grown by the high-pressure pulsed laser deposition process (HP-PLD), where phosphorus pentoxide is used as the dopant source. The morphology, composition, and microstructural changes of ZnO nanowires after phosphorus doping were investigated with scanning electron microscopy, X-ray diffraction spectrum, energy-dispersive X-ray spectrum, transmission electron microscope, and Raman scattering spectrum. Optical fingerprints of ZnO:P nanowires like neutral acceptor-bound exciton emission (3.357 eV, A0X), free-electron to neutral-acceptor emission (3.311 eV, FA), and their longitudinal optical (LO) phonon replicas were observed, and their dependence on the phosphorus doping concentration was investigated with room/low-temperature photoluminescence spectra. It indicates that acceptor levels with a binding energy of about 130 meV were formed, and the optimized phosphorus concentration was realized with the ZnO:P2O5 (2 wt %) target.

Original languageEnglish
Pages (from-to)4371-4378
Number of pages8
JournalJournal of Physical Chemistry C
Volume119
Issue number8
DOIs
Publication statusPublished - Feb 26 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Phosphorus concentration dependent microstructure and optical property of zno nanowires grown by high-pressure pulsed laser deposition'. Together they form a unique fingerprint.

Cite this