Photon upconversion in supramolecular gel matrixes: Spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability

Pengfei Duan, Nobuhiro Yanai, Hisanori Nagatomi, Nobuo Kimizuka

Research output: Contribution to journalArticle

158 Citations (Scopus)

Abstract

Efficient triplet-triplet annihilation (TTA)-based photon upconversion (UC) is achieved in supramolecular organogel matrixes. Intense UC emission was observed from donor (sensitizer)-acceptor (emitter) pairs in organogels even under air-saturated condition, which solved a major problem: deactivation of excited triplet states and TTA-UC by molecular oxygen. These unique TTA-UC molecular systems were formed by spontaneous accumulation of donor and acceptor molecules in the gel nanofibers which are stabilized by developed hydrogen bond networks. These molecules preorganized in nanofibers showed efficient transfer and migration of triplet energy, as revealed by a series of spectroscopic, microscopic, and rheological characterizations. Surprisingly, the donor and acceptor molecules incorporated in nanofibers are significantly protected from the quenching action of dissolved molecular oxygen, indicating very low solubility of oxygen to nanofibers. In addition, efficient TTA-UC is achieved even under excitation power lower than the solar irradiance. These observations clearly unveil the adaptive feature of host gel nanofiber networks that allows efficient and cooperative inclusion of donor-acceptor molecules while maintaining their structural integrity. As evidence, thermally induced reversible assembly/disassembly of supramolecular gel networks lead to reversible modulation of the UC emission intensity. Moreover, the air-stable TTA-UC in supramolecular gel nanofibers was generally observed for a wide combination of donor-acceptor pairs which enabled near IR-to-yellow, red-to-cyan, green-to-blue, and blue-to-UV wavelength conversions. These findings provide a new perspective of air-stable TTA-UC molecular systems; spontaneous and adaptive accumulation of donor and acceptor molecules in oxygen-blocking, self-assembled nanomatrixes. The oxygen-barrier property of l-glutamate-derived organogel nanofibers has been unveiled for the first time, which could find many applications in stabilizing air-sensitive species in aerated systems.

Original languageEnglish
Pages (from-to)1887-1894
Number of pages8
JournalJournal of the American Chemical Society
Volume137
Issue number5
DOIs
Publication statusPublished - Feb 11 2015

Fingerprint

Nanofibers
Photons
Gels
Air
Light
Oxygen
Molecules
Molecular oxygen
Solar Energy
Optical frequency conversion
Structural integrity
Dissolved oxygen
Excited states
Solubility
Glutamic Acid
Hydrogen
Quenching
Hydrogen bonds
Modulation

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

@article{89501fd406384f6b874a89623e4d2486,
title = "Photon upconversion in supramolecular gel matrixes: Spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability",
abstract = "Efficient triplet-triplet annihilation (TTA)-based photon upconversion (UC) is achieved in supramolecular organogel matrixes. Intense UC emission was observed from donor (sensitizer)-acceptor (emitter) pairs in organogels even under air-saturated condition, which solved a major problem: deactivation of excited triplet states and TTA-UC by molecular oxygen. These unique TTA-UC molecular systems were formed by spontaneous accumulation of donor and acceptor molecules in the gel nanofibers which are stabilized by developed hydrogen bond networks. These molecules preorganized in nanofibers showed efficient transfer and migration of triplet energy, as revealed by a series of spectroscopic, microscopic, and rheological characterizations. Surprisingly, the donor and acceptor molecules incorporated in nanofibers are significantly protected from the quenching action of dissolved molecular oxygen, indicating very low solubility of oxygen to nanofibers. In addition, efficient TTA-UC is achieved even under excitation power lower than the solar irradiance. These observations clearly unveil the adaptive feature of host gel nanofiber networks that allows efficient and cooperative inclusion of donor-acceptor molecules while maintaining their structural integrity. As evidence, thermally induced reversible assembly/disassembly of supramolecular gel networks lead to reversible modulation of the UC emission intensity. Moreover, the air-stable TTA-UC in supramolecular gel nanofibers was generally observed for a wide combination of donor-acceptor pairs which enabled near IR-to-yellow, red-to-cyan, green-to-blue, and blue-to-UV wavelength conversions. These findings provide a new perspective of air-stable TTA-UC molecular systems; spontaneous and adaptive accumulation of donor and acceptor molecules in oxygen-blocking, self-assembled nanomatrixes. The oxygen-barrier property of l-glutamate-derived organogel nanofibers has been unveiled for the first time, which could find many applications in stabilizing air-sensitive species in aerated systems.",
author = "Pengfei Duan and Nobuhiro Yanai and Hisanori Nagatomi and Nobuo Kimizuka",
year = "2015",
month = "2",
day = "11",
doi = "10.1021/ja511061h",
language = "English",
volume = "137",
pages = "1887--1894",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "5",

}

TY - JOUR

T1 - Photon upconversion in supramolecular gel matrixes

T2 - Spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability

AU - Duan, Pengfei

AU - Yanai, Nobuhiro

AU - Nagatomi, Hisanori

AU - Kimizuka, Nobuo

PY - 2015/2/11

Y1 - 2015/2/11

N2 - Efficient triplet-triplet annihilation (TTA)-based photon upconversion (UC) is achieved in supramolecular organogel matrixes. Intense UC emission was observed from donor (sensitizer)-acceptor (emitter) pairs in organogels even under air-saturated condition, which solved a major problem: deactivation of excited triplet states and TTA-UC by molecular oxygen. These unique TTA-UC molecular systems were formed by spontaneous accumulation of donor and acceptor molecules in the gel nanofibers which are stabilized by developed hydrogen bond networks. These molecules preorganized in nanofibers showed efficient transfer and migration of triplet energy, as revealed by a series of spectroscopic, microscopic, and rheological characterizations. Surprisingly, the donor and acceptor molecules incorporated in nanofibers are significantly protected from the quenching action of dissolved molecular oxygen, indicating very low solubility of oxygen to nanofibers. In addition, efficient TTA-UC is achieved even under excitation power lower than the solar irradiance. These observations clearly unveil the adaptive feature of host gel nanofiber networks that allows efficient and cooperative inclusion of donor-acceptor molecules while maintaining their structural integrity. As evidence, thermally induced reversible assembly/disassembly of supramolecular gel networks lead to reversible modulation of the UC emission intensity. Moreover, the air-stable TTA-UC in supramolecular gel nanofibers was generally observed for a wide combination of donor-acceptor pairs which enabled near IR-to-yellow, red-to-cyan, green-to-blue, and blue-to-UV wavelength conversions. These findings provide a new perspective of air-stable TTA-UC molecular systems; spontaneous and adaptive accumulation of donor and acceptor molecules in oxygen-blocking, self-assembled nanomatrixes. The oxygen-barrier property of l-glutamate-derived organogel nanofibers has been unveiled for the first time, which could find many applications in stabilizing air-sensitive species in aerated systems.

AB - Efficient triplet-triplet annihilation (TTA)-based photon upconversion (UC) is achieved in supramolecular organogel matrixes. Intense UC emission was observed from donor (sensitizer)-acceptor (emitter) pairs in organogels even under air-saturated condition, which solved a major problem: deactivation of excited triplet states and TTA-UC by molecular oxygen. These unique TTA-UC molecular systems were formed by spontaneous accumulation of donor and acceptor molecules in the gel nanofibers which are stabilized by developed hydrogen bond networks. These molecules preorganized in nanofibers showed efficient transfer and migration of triplet energy, as revealed by a series of spectroscopic, microscopic, and rheological characterizations. Surprisingly, the donor and acceptor molecules incorporated in nanofibers are significantly protected from the quenching action of dissolved molecular oxygen, indicating very low solubility of oxygen to nanofibers. In addition, efficient TTA-UC is achieved even under excitation power lower than the solar irradiance. These observations clearly unveil the adaptive feature of host gel nanofiber networks that allows efficient and cooperative inclusion of donor-acceptor molecules while maintaining their structural integrity. As evidence, thermally induced reversible assembly/disassembly of supramolecular gel networks lead to reversible modulation of the UC emission intensity. Moreover, the air-stable TTA-UC in supramolecular gel nanofibers was generally observed for a wide combination of donor-acceptor pairs which enabled near IR-to-yellow, red-to-cyan, green-to-blue, and blue-to-UV wavelength conversions. These findings provide a new perspective of air-stable TTA-UC molecular systems; spontaneous and adaptive accumulation of donor and acceptor molecules in oxygen-blocking, self-assembled nanomatrixes. The oxygen-barrier property of l-glutamate-derived organogel nanofibers has been unveiled for the first time, which could find many applications in stabilizing air-sensitive species in aerated systems.

UR - http://www.scopus.com/inward/record.url?scp=84922821806&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922821806&partnerID=8YFLogxK

U2 - 10.1021/ja511061h

DO - 10.1021/ja511061h

M3 - Article

C2 - 25599418

AN - SCOPUS:84922821806

VL - 137

SP - 1887

EP - 1894

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 5

ER -