Physics of energetic ions

J. Jacquinot, S. Putvinski, G. Bosia, A. Fukuyama, R. Hemsworth, S. Konovalov, Yoshihiko Nagashima, W. M. Nevins, K. Rasumova, F. Romanelli, K. Tobita, K. Ushigusa, J. W. Van Dam, V. Vdovin, H. L. Berk, D. Borba, B. N. Breizman, R. Budny, J. Candy, C. Z. Cheng & 25 others C. Challis, A. Fasoli, G. Y. Fu, W. Heidbrink, R. Nazikian, G. Martin, F. Porcelli, M. Redi, M. N. Rosenbluth, G. Sadler, S. E. Sharapov, D. A. Spong, R. White, F. Zonca, F. W. Perkins, D. E. Post, N. A. Uckan, M. Azumi, D. J. Campbell, N. Ivanov, N. R. Sauthoff, M. Wakatani, W. M. Nevins, M. Shimada, J. Van Dam

Research output: Contribution to journalArticle

91 Citations (Scopus)

Abstract

Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor.

Original languageEnglish
Pages (from-to)2471-2494
Number of pages24
JournalNuclear Fusion
Volume39
Issue number12
DOIs
Publication statusPublished - Dec 1 1999

Fingerprint

alpha particles
physics
energetic particles
ions
reactors
burn-in
plasma heating
ripples
ignition
fusion
projection
heat
life (durability)
heating

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this

Jacquinot, J., Putvinski, S., Bosia, G., Fukuyama, A., Hemsworth, R., Konovalov, S., ... Van Dam, J. (1999). Physics of energetic ions. Nuclear Fusion, 39(12), 2471-2494. https://doi.org/10.1088/0029-5515/39/12/305

Physics of energetic ions. / Jacquinot, J.; Putvinski, S.; Bosia, G.; Fukuyama, A.; Hemsworth, R.; Konovalov, S.; Nagashima, Yoshihiko; Nevins, W. M.; Rasumova, K.; Romanelli, F.; Tobita, K.; Ushigusa, K.; Van Dam, J. W.; Vdovin, V.; Berk, H. L.; Borba, D.; Breizman, B. N.; Budny, R.; Candy, J.; Cheng, C. Z.; Challis, C.; Fasoli, A.; Fu, G. Y.; Heidbrink, W.; Nazikian, R.; Martin, G.; Porcelli, F.; Redi, M.; Rosenbluth, M. N.; Sadler, G.; Sharapov, S. E.; Spong, D. A.; White, R.; Zonca, F.; Perkins, F. W.; Post, D. E.; Uckan, N. A.; Azumi, M.; Campbell, D. J.; Ivanov, N.; Sauthoff, N. R.; Wakatani, M.; Nevins, W. M.; Shimada, M.; Van Dam, J.

In: Nuclear Fusion, Vol. 39, No. 12, 01.12.1999, p. 2471-2494.

Research output: Contribution to journalArticle

Jacquinot, J, Putvinski, S, Bosia, G, Fukuyama, A, Hemsworth, R, Konovalov, S, Nagashima, Y, Nevins, WM, Rasumova, K, Romanelli, F, Tobita, K, Ushigusa, K, Van Dam, JW, Vdovin, V, Berk, HL, Borba, D, Breizman, BN, Budny, R, Candy, J, Cheng, CZ, Challis, C, Fasoli, A, Fu, GY, Heidbrink, W, Nazikian, R, Martin, G, Porcelli, F, Redi, M, Rosenbluth, MN, Sadler, G, Sharapov, SE, Spong, DA, White, R, Zonca, F, Perkins, FW, Post, DE, Uckan, NA, Azumi, M, Campbell, DJ, Ivanov, N, Sauthoff, NR, Wakatani, M, Nevins, WM, Shimada, M & Van Dam, J 1999, 'Physics of energetic ions', Nuclear Fusion, vol. 39, no. 12, pp. 2471-2494. https://doi.org/10.1088/0029-5515/39/12/305
Jacquinot J, Putvinski S, Bosia G, Fukuyama A, Hemsworth R, Konovalov S et al. Physics of energetic ions. Nuclear Fusion. 1999 Dec 1;39(12):2471-2494. https://doi.org/10.1088/0029-5515/39/12/305
Jacquinot, J. ; Putvinski, S. ; Bosia, G. ; Fukuyama, A. ; Hemsworth, R. ; Konovalov, S. ; Nagashima, Yoshihiko ; Nevins, W. M. ; Rasumova, K. ; Romanelli, F. ; Tobita, K. ; Ushigusa, K. ; Van Dam, J. W. ; Vdovin, V. ; Berk, H. L. ; Borba, D. ; Breizman, B. N. ; Budny, R. ; Candy, J. ; Cheng, C. Z. ; Challis, C. ; Fasoli, A. ; Fu, G. Y. ; Heidbrink, W. ; Nazikian, R. ; Martin, G. ; Porcelli, F. ; Redi, M. ; Rosenbluth, M. N. ; Sadler, G. ; Sharapov, S. E. ; Spong, D. A. ; White, R. ; Zonca, F. ; Perkins, F. W. ; Post, D. E. ; Uckan, N. A. ; Azumi, M. ; Campbell, D. J. ; Ivanov, N. ; Sauthoff, N. R. ; Wakatani, M. ; Nevins, W. M. ; Shimada, M. ; Van Dam, J. / Physics of energetic ions. In: Nuclear Fusion. 1999 ; Vol. 39, No. 12. pp. 2471-2494.
@article{2c182c1602e1476c8e78fb622229bfb6,
title = "Physics of energetic ions",
abstract = "Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor.",
author = "J. Jacquinot and S. Putvinski and G. Bosia and A. Fukuyama and R. Hemsworth and S. Konovalov and Yoshihiko Nagashima and Nevins, {W. M.} and K. Rasumova and F. Romanelli and K. Tobita and K. Ushigusa and {Van Dam}, {J. W.} and V. Vdovin and Berk, {H. L.} and D. Borba and Breizman, {B. N.} and R. Budny and J. Candy and Cheng, {C. Z.} and C. Challis and A. Fasoli and Fu, {G. Y.} and W. Heidbrink and R. Nazikian and G. Martin and F. Porcelli and M. Redi and Rosenbluth, {M. N.} and G. Sadler and Sharapov, {S. E.} and Spong, {D. A.} and R. White and F. Zonca and Perkins, {F. W.} and Post, {D. E.} and Uckan, {N. A.} and M. Azumi and Campbell, {D. J.} and N. Ivanov and Sauthoff, {N. R.} and M. Wakatani and Nevins, {W. M.} and M. Shimada and {Van Dam}, J.",
year = "1999",
month = "12",
day = "1",
doi = "10.1088/0029-5515/39/12/305",
language = "English",
volume = "39",
pages = "2471--2494",
journal = "Nuclear Fusion",
issn = "0029-5515",
publisher = "IOP Publishing Ltd.",
number = "12",

}

TY - JOUR

T1 - Physics of energetic ions

AU - Jacquinot, J.

AU - Putvinski, S.

AU - Bosia, G.

AU - Fukuyama, A.

AU - Hemsworth, R.

AU - Konovalov, S.

AU - Nagashima, Yoshihiko

AU - Nevins, W. M.

AU - Rasumova, K.

AU - Romanelli, F.

AU - Tobita, K.

AU - Ushigusa, K.

AU - Van Dam, J. W.

AU - Vdovin, V.

AU - Berk, H. L.

AU - Borba, D.

AU - Breizman, B. N.

AU - Budny, R.

AU - Candy, J.

AU - Cheng, C. Z.

AU - Challis, C.

AU - Fasoli, A.

AU - Fu, G. Y.

AU - Heidbrink, W.

AU - Nazikian, R.

AU - Martin, G.

AU - Porcelli, F.

AU - Redi, M.

AU - Rosenbluth, M. N.

AU - Sadler, G.

AU - Sharapov, S. E.

AU - Spong, D. A.

AU - White, R.

AU - Zonca, F.

AU - Perkins, F. W.

AU - Post, D. E.

AU - Uckan, N. A.

AU - Azumi, M.

AU - Campbell, D. J.

AU - Ivanov, N.

AU - Sauthoff, N. R.

AU - Wakatani, M.

AU - Nevins, W. M.

AU - Shimada, M.

AU - Van Dam, J.

PY - 1999/12/1

Y1 - 1999/12/1

N2 - Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor.

AB - Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor.

UR - http://www.scopus.com/inward/record.url?scp=2942542743&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2942542743&partnerID=8YFLogxK

U2 - 10.1088/0029-5515/39/12/305

DO - 10.1088/0029-5515/39/12/305

M3 - Article

VL - 39

SP - 2471

EP - 2494

JO - Nuclear Fusion

JF - Nuclear Fusion

SN - 0029-5515

IS - 12

ER -