Plane formation by synchronous mobile robots in the three-dimensional Euclidean space

Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, Masafumi Yamashita

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


Creating a swarm of mobile computing entities, frequently called robots, agents, or sensor nodes, with selforganization ability is a contemporary challenge in distributed computing. Motivated by this, we investigate the plane formation problem that requires a swarm of robots moving in the three-dimensional Euclidean space to land on a common plane. The robots are fully synchronous and endowed with visual perception. But they do not have identifiers, nor access to the global coordinate system, nor any means of explicit communication with each other. Though there are plenty of results on the agreement problem for robots in the two-dimensional plane, for example, the point formation problem, the pattern formation problem, and so on, this is the first result for robots in the three-dimensional space. This article presents a necessary and sufficient condition for fully synchronous robots to solve the plane formation problem that does not depend on obliviousness, i.e., the availability of local memory at robots. An implication of the result is somewhat counter-intuitive: The robots cannot form a plane from most of the semi-regular polyhedra, while they can form a plane from every regular polyhedron (except a regular icosahedron), whose symmetry is usually considered to be higher than any semi-regular polyhedron.

Original languageEnglish
Article number16
JournalJournal of the ACM
Issue number3
Publication statusPublished - Jun 2017

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Information Systems
  • Hardware and Architecture
  • Artificial Intelligence


Dive into the research topics of 'Plane formation by synchronous mobile robots in the three-dimensional Euclidean space'. Together they form a unique fingerprint.

Cite this