Plasma flow in a linear magnetized plasma

Y. Saitou, A. Yonesu, S. Shinohara, M. Yagi, M. Azumi, M. V. Ignatenko, Y. Nagashima, T. Nishijima, M. Kawaguchi, K. Terasaka, Y. Kawai, N. Kasuya, K. Itoh, S. I. Itoh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have been investigating the drift wave turbulence in the linear magnetized plasma. To realize the fully developed drift wave turbulence in the device, the ion-neutral collision frequency has to be less than the threshold value by reducing the neutral density and/or by increasing the ionization ratio from the MHD simulation. The Monte Carlo simulation has shown that the Mach number, M, and the electron temperature, Te, affect the neutral density profile. When Te is low, the neutral density, nn, depends on M. The baffle plate increases (decreases) the neutral density if M is below (above) the critical value. When Te is high, the ionization rate rises and the neutral density does not strongly depend on M. The electron density has a hollow profile under the present experimental condition. Based on the unmagnetized kinetic model, M was 0.3 (up stream) ∼ 0.6 (near end-plate). This was higher than the critical value in the calculation where the baffle plate becomes effective. The measured ion and neutral temperatures were Ti ≈ 0.6 eV and Tn ≤ 0.2 eV, respectively. More precise measurements on Te, Ti, and Tn, as well as enhanced neutral pumping, will be performed for the control of the neutral density distribution to excite the drift wave turbulence.

Original languageEnglish
Title of host publication33rd EPS Conference on Plasma Physics 2006, EPS 2006 - Europhysics Conference Abstracts
Pages300-303
Number of pages4
Publication statusPublished - Dec 1 2006
Event33rd European Physical Society Conference on Plasma Physics 2006, EPS 2006 - Rome, Italy
Duration: Jun 19 2006Jun 23 2006

Publication series

Name33rd EPS Conference on Plasma Physics 2006, EPS 2006
Volume1

Other

Other33rd European Physical Society Conference on Plasma Physics 2006, EPS 2006
CountryItaly
CityRome
Period6/19/066/23/06

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'Plasma flow in a linear magnetized plasma'. Together they form a unique fingerprint.

Cite this