Polarization doping - Ab initio verification of the concept: Charge conservation and nonlocality

Ashfaq Ahmad, Pawel Strak, Pawel Tomasz Kempisty, Konrad Sakowski, Jacek Piechota, Yoshihiro Kangawa, Izabella Grzegory, Michal Leszczynski, Zbigniew R. Zytkiewicz, Grzegorz Muziol, Eva Monroy, Agata Kaminska, Stanislaw Krukowski

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, we study the emergence of polarization doping in AlxGa1-xN layers with graded composition from a theoretical viewpoint. It is shown that bulk electric charge density emerges in the graded concentration region. The magnitude of the effect, i.e., the relation between the polarization bulk charge density and the concentration gradient is obtained. The appearance of mobile charge in the wurtzite structure grown along the polar direction was investigated using the combination of ab initio and drift-diffusion models. It was shown that the ab initio results can be recovered precisely by proper parameterization of drift-diffusion representation of the complex nitride system. It was shown that the mobile charge appears due to the increase of the distance between opposite polarization-induced charges. It was demonstrated that, for sufficiently large space distance between polarization charges, the opposite mobile charges are induced. We demonstrate that the charge conservation law applies for fixed and mobile charge separately, leading to nonlocal compensation phenomena involving (i) the bulk fixed and polarization sheet charge at the heterointerfaces and (ii) the mobile band and the defect charge. Therefore, two charge conservation laws are obeyed that induces nonlocality in the system. The magnitude of the effect allows obtaining technically viable mobile charge density for optoelectronic devices without impurity doping (donors or acceptors). Therefore, it provides an additional tool for the device designer, with the potential to attain high conductivities: high carrier concentrations can be obtained even in materials with high dopant ionization energies, and the mobility is not limited by scattering at ionized impurities.

Original languageEnglish
Article number064301
JournalJournal of Applied Physics
Volume132
Issue number6
DOIs
Publication statusPublished - Aug 14 2022

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this