Polarization properties of aerosol particles over western Japan: Classification, seasonal variation, and implications for air quality

Xiaole Pan, Itsushi Uno, Yukari Hara, Kazuo Osada, Shigekazu Yamamoto, Zhe Wang, Nobuo Sugimoto, Hiroshi Kobayashi, Zifa Wang

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 μm) and coarse mode (2.5 μm < Dp < 10 μm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR= 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 μm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

Original languageEnglish
Pages (from-to)9863-9873
Number of pages11
JournalAtmospheric Chemistry and Physics
Volume16
Issue number15
DOIs
Publication statusPublished - Aug 5 2016

Fingerprint

air quality
polarization
seasonal variation
aerosol
dust
air mass
aerosol composition
pollutant
winter
sea salt
light scattering
summer
coexistence
aerodynamics
particle
relative humidity
trajectory
pollution
atmosphere
air

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Cite this

Polarization properties of aerosol particles over western Japan : Classification, seasonal variation, and implications for air quality. / Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa.

In: Atmospheric Chemistry and Physics, Vol. 16, No. 15, 05.08.2016, p. 9863-9873.

Research output: Contribution to journalArticle

Pan, Xiaole ; Uno, Itsushi ; Hara, Yukari ; Osada, Kazuo ; Yamamoto, Shigekazu ; Wang, Zhe ; Sugimoto, Nobuo ; Kobayashi, Hiroshi ; Wang, Zifa. / Polarization properties of aerosol particles over western Japan : Classification, seasonal variation, and implications for air quality. In: Atmospheric Chemistry and Physics. 2016 ; Vol. 16, No. 15. pp. 9863-9873.
@article{0374f47658dc4556a76672b97867e076,
title = "Polarization properties of aerosol particles over western Japan: Classification, seasonal variation, and implications for air quality",
abstract = "Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 μm) and coarse mode (2.5 μm < Dp < 10 μm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR= 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 μm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.",
author = "Xiaole Pan and Itsushi Uno and Yukari Hara and Kazuo Osada and Shigekazu Yamamoto and Zhe Wang and Nobuo Sugimoto and Hiroshi Kobayashi and Zifa Wang",
year = "2016",
month = "8",
day = "5",
doi = "10.5194/acp-16-9863-2016",
language = "English",
volume = "16",
pages = "9863--9873",
journal = "Atmospheric Chemistry and Physics",
issn = "1680-7316",
publisher = "European Geosciences Union",
number = "15",

}

TY - JOUR

T1 - Polarization properties of aerosol particles over western Japan

T2 - Classification, seasonal variation, and implications for air quality

AU - Pan, Xiaole

AU - Uno, Itsushi

AU - Hara, Yukari

AU - Osada, Kazuo

AU - Yamamoto, Shigekazu

AU - Wang, Zhe

AU - Sugimoto, Nobuo

AU - Kobayashi, Hiroshi

AU - Wang, Zifa

PY - 2016/8/5

Y1 - 2016/8/5

N2 - Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 μm) and coarse mode (2.5 μm < Dp < 10 μm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR= 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 μm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

AB - Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 μm) and coarse mode (2.5 μm < Dp < 10 μm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR= 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 μm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

UR - http://www.scopus.com/inward/record.url?scp=84981250059&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84981250059&partnerID=8YFLogxK

U2 - 10.5194/acp-16-9863-2016

DO - 10.5194/acp-16-9863-2016

M3 - Article

AN - SCOPUS:84981250059

VL - 16

SP - 9863

EP - 9873

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 15

ER -