### Abstract

A complete set of polarization transfer coefficients has been measured for quasielastic [Formula Presented] reactions on [Formula Presented] [Formula Presented] and [Formula Presented] at a bombarding energy of 346 MeV and a laboratory scattering angle of [Formula Presented] The spin-longitudinal [Formula Presented] and spin-transverse [Formula Presented] response functions are extracted within a framework of a plane-wave impulse approximation with eikonal and optimal factorization approximations. The theoretically expected enhancement of [Formula Presented] is not observed. The observed [Formula Presented] is consistent with the pionic enhanced [Formula Presented] expected by random-phase approximation (RPA) calculations. On the contrary, a large excess of the observed [Formula Presented] is found in comparison with [Formula Presented] of the quasielastic electron scattering as well as of RPA calculations. This excess masks the effect of pionic correlations in [Formula Presented] The theoretical calculations are performed in a distorted-wave impulse approximation with RPA correlations, which indicates that the nuclear absorption effect depends on the spin direction. This spin-direction dependence is responsible in part for the excess of [Formula Presented]

Original language | English |
---|---|

Pages (from-to) | 3177-3195 |

Number of pages | 19 |

Journal | Physical Review C - Nuclear Physics |

Volume | 59 |

Issue number | 6 |

DOIs | |

Publication status | Published - Jan 1 1999 |

Externally published | Yes |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Nuclear and High Energy Physics

### Cite this

*Physical Review C - Nuclear Physics*,

*59*(6), 3177-3195. https://doi.org/10.1103/PhysRevC.59.3177