TY - JOUR
T1 - Polo-like kinase Cdc5 regulates Spc72 recruitment to spindle pole body in the methylotrophic yeast ogataea polymorpha
AU - Maekawa, Hiromi
AU - Neuner, Annett
AU - Rüthnick, Diana
AU - Schiebel, Elmar
AU - Pereira, Gislene
AU - Kaneko, Yoshinobu
N1 - Funding Information:
We thank Dr. K Richter and the Central Unit Electron Microscopy at the German Cancer Research Center (DKFZ) for their kind support for the electron microscopy (EM) analyses. The Nikon Imaging Facility Heidelberg is acknowledged for the SIM analyses. We thank Research Center for Ultra-High Voltage Electron Microscopy at Osaka University for supporting our EM analyses. We thank Japan Collection of Microorganisms (JCM) and Dr T Endo for yeast strains, information, and advice on phylogenetic relationships among yeast species. We thank Dr. T Lin for assistance on bioinformatics. Dr. H Takuma, Dr. Yamaguchi, and Integrated Imaging Research Support (IISR) Japan are acknowledged for technical advice and the primary EM analysis, respectively. HM is grateful to Dr. Takegawa for generously allowing access to facilities in the lab. This work was supported by the Endowed Chair Program of the Institute for Fermentation, Osaka (IFO), Japan (YK) and JSPS KAKENHI Grant Number JP24570214 (HM). GP acknowledges funding from the German Research Council (DFG, PE1883) and DFG collaborative programs SFB873 and SFB1036. ES acknowledges funding from the German Research Council (DFG, Schi 295/4-3).
Publisher Copyright:
© Maekawa et al.
PY - 2017/8/30
Y1 - 2017/8/30
N2 - Cytoplasmic microtubules (cMT) control mitotic spindle positioning in many organisms, and are therefore pivotal for successful cell division. Despite its importance, the temporal control of cMT formation remains poorly understood. Here we show that unlike the best-studied yeast Saccharomyces cerevisiae, position of pre-anaphase nucleus is not strongly biased toward bud neck in Ogataea polymorpha and the regulation of spindle positioning becomes active only shortly before anaphase. This is likely due to the unstable property of cMTs compared to those in S. cerevisiae. Furthermore, we show that cMT nucleation/anchoring is restricted at the level of recruitment of the γ-tubulin complex receptor, Spc72, to spindle pole body (SPB), which is regulated by the polo-like kinase Cdc5. Additionally, electron microscopy revealed that the cytoplasmic side of SPB is structurally different between G1 and anaphase. Thus, polo-like kinase dependent recruitment of γ-tubulin receptor to SPBs determines the timing of spindle orientation in O. polymorpha.
AB - Cytoplasmic microtubules (cMT) control mitotic spindle positioning in many organisms, and are therefore pivotal for successful cell division. Despite its importance, the temporal control of cMT formation remains poorly understood. Here we show that unlike the best-studied yeast Saccharomyces cerevisiae, position of pre-anaphase nucleus is not strongly biased toward bud neck in Ogataea polymorpha and the regulation of spindle positioning becomes active only shortly before anaphase. This is likely due to the unstable property of cMTs compared to those in S. cerevisiae. Furthermore, we show that cMT nucleation/anchoring is restricted at the level of recruitment of the γ-tubulin complex receptor, Spc72, to spindle pole body (SPB), which is regulated by the polo-like kinase Cdc5. Additionally, electron microscopy revealed that the cytoplasmic side of SPB is structurally different between G1 and anaphase. Thus, polo-like kinase dependent recruitment of γ-tubulin receptor to SPBs determines the timing of spindle orientation in O. polymorpha.
UR - http://www.scopus.com/inward/record.url?scp=85030628540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030628540&partnerID=8YFLogxK
U2 - 10.7554/eLife.24340
DO - 10.7554/eLife.24340
M3 - Article
C2 - 28853395
AN - SCOPUS:85030628540
SN - 2050-084X
VL - 6
JO - eLife
JF - eLife
M1 - e24340
ER -