Abstract
Glycopolymers of polyacrylamide derivatives with mannose were prepared via the living radical polymerization of a reversible addition-fragmentation chain transfer reagent. The polymers obtained showed narrow polydispersities. The polymer terminal group was reduced to a thiol, and the resulting polymers were mixed with gold nanoparticles to prepare glycopolymer-substituted gold nanoparticles. The mannose density was adjusted by varying the copolymer preparation and the glycopolymer-polyacrylamide mixture. The colloidal stability of the polymer-coated gold nanoparticles is dependent on the mannose density. Polymer-coated nanoparticles with low mannose densities showed better colloidal stabilities. The molecular recognition abilities of the polymer were investigated using UV-vis spectroscopy. The polymer-coated nanoparticles showed strong protein recognition abilities because of multivalent binding effects. Polymers with high mannose densities showed stronger recognition abilities. The molecular recognition abilities of the glycopolymer-polyacrylamide mixed nanoparticles are dependent on the mannose density. An immunochromatographic assay was performed using the polymer-coated nanoparticles. The color was detected from the gold nanoparticles in the nanoparticle systems with strong molecular recognition and good colloid stability.
Original language | English |
---|---|
Pages (from-to) | 931-939 |
Number of pages | 9 |
Journal | Polymer Chemistry |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - Feb 7 2014 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Biochemistry
- Polymers and Plastics
- Organic Chemistry