Pore network modeling of a microporous layer for polymer electrolyte fuel cells under wet conditions

Research output: Contribution to journalArticlepeer-review

Abstract

The gas diffusion layers (GDLs) of polymer electrolyte fuel cells have been developed with applying microporous layers (MPLs) in their catalyst layer (CL) side to alleviate the accumulation of liquid water in the CL for oxygen transport to the cathode CL. A three-dimensional porous structure of our in-house hydrophobic MPL is numerically modeled with a pore network model (PNM). The convective air permeability and oxygen diffusivity, which depend on liquid saturation, are evaluated. To construct the PNM, focused ion beam scanning electron microscopy (FIB-SEM) is used to derive the pore size distribution (PSD). The model is ex-situ validated through air permeability and oxygen diffusivity tests with controlled saturation of non-volatile wetting liquid that is stable in the hydrophobic MPL. Oxygen diffusivity of the MPL is obtained by identifying the diffusion resistances of the concentration boundary layers and GDL substrate in the tests. The model predicts the effects of liquid water saturation in the MPL on the air and liquid water permeations, and the oxygen diffusion, and thus can be used to design optimal PSDs for practical cells.

Original languageEnglish
Article number232677
JournalJournal of Power Sources
Volume560
DOIs
Publication statusPublished - Mar 15 2023

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Pore network modeling of a microporous layer for polymer electrolyte fuel cells under wet conditions'. Together they form a unique fingerprint.

Cite this