Porous Boron Nitride as a Weak Solid Base Catalyst

Shohei Nakamura, Atsushi Takagaki, Motonori Watanabe, Kanta Yamada, Masaaki Yoshida, Tatsumi Ishihara

Research output: Contribution to journalArticlepeer-review

Abstract

Porous boron nitride was synthesized by pyrolysis from boric acid and urea mixed in varying molar ratios. The boron nitride prepared had high surface areas ranging from 376 to 647 m2 g−1 with both microporous and mesoporous structures. The sample prepared with a urea-to-boric acid molar ratio of 5 exhibited the highest pore volume with the highest surface area of mesopores. Boron-K edge X-ray absorption fine structure spectroscopy revealed that the surface structure consisted of BN3 sites along with BN2O, BNO2, and BO3 sites. Fourier transform infrared (FTIR) spectroscopy indicated the formation of amino and hydroxyl groups on the surface. Analysis using color indicator reagents and deuterated chloroform-adsorbed FTIR results indicated that the porous boron nitride had very weak base sites of strength +7.2>H−≥+6.3. Porous boron nitride exhibited a high activity for the nitroaldol reaction with a high selectivity for nitroalkene (>97 %). A good correlation was observed between the catalytic activity of the boron nitride catalysts and their porous structures.

Original languageEnglish
Pages (from-to)6033-6039
Number of pages7
JournalChemCatChem
Volume12
Issue number23
DOIs
Publication statusPublished - Dec 4 2020

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Porous Boron Nitride as a Weak Solid Base Catalyst'. Together they form a unique fingerprint.

Cite this