Possibilities to miss predicting timing errors in canary flip-flops

Yuji Kunitake, Toshinori Sato, Hiroto Yasuura, Takanori Hayashida

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Deep submicron technologies increase parameter variations, which will make microprocessor designs very difficult, since every variation requires a large safety margin for achieving specified timing yield. This means higher supply voltage, which results in large energy consumption. Razor flip-flop (FF) is a clever technique to eliminate the supply voltage margin by exploiting circuit-level timing speculation. It combines dynamic voltage scaling technique with the error detection and recovery mechanism. We are studying an alternative timing-error-predicting FF, named canary FF. This paper discusses a critical issue regarding the canary FF. Detailed gate- and architectural-level co-simulations unveil that canary FF occasionally misses predicting timing errors.

Original languageEnglish
Title of host publication54th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2011
DOIs
Publication statusPublished - Oct 13 2011
Event54th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2011 - Seoul, Korea, Republic of
Duration: Aug 7 2011Aug 10 2011

Publication series

NameMidwest Symposium on Circuits and Systems
ISSN (Print)1548-3746

Other

Other54th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2011
CountryKorea, Republic of
CitySeoul
Period8/7/118/10/11

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Possibilities to miss predicting timing errors in canary flip-flops'. Together they form a unique fingerprint.

Cite this