TY - JOUR
T1 - Potential role for YB-1 in castration-resistant prostate cancer and resistance to enzalutamide through the androgen receptor V7
AU - Shiota, Masaki
AU - Fujimoto, Naohiro
AU - Imada, Kenjiro
AU - Yokomizo, Akira
AU - Itsumi, Momoe
AU - Takeuchi, Ario
AU - Kuruma, Hidetoshi
AU - Inokuchi, Junichi
AU - Tatsugami, Katsunori
AU - Uchiumi, Takeshi
AU - Oda, Yoshinao
AU - Naito, Seiji
N1 - Publisher Copyright:
© The Author 2016. Published by Oxford University Press. All rights reserved.
PY - 2016/7
Y1 - 2016/7
N2 - Background: Although androgen deprivation therapy for advanced prostate cancer initially exerts excellent anticancer effects, most prostate cancer treated with androgen deprivation therapy eventually recurs as castration-resistant prostate cancer (CRPC). Although aberrant kinase activation has been proposed as a mechanism of castration resistance, comprehensive kinase profiles in CRPC remain unknown. Therefore, we aimed to elucidate the kinome in CRPC as well as the role of key molecules. Methods: We utilized a kinome array in androgen-dependent LNCaP and castration-resistant CxR cells. The effect of Y-box binding protein-1 (YB-1) on androgen receptor (AR) expression was examined by quantitative polymerase chain reaction and western blot analysis. The association between polymorphisms in the YB-1 gene determined by genotyping and YB-1 expression evaluated by immunohistochemistry in prostate cancer tissues, as well as outcome in metastatic prostate cancer, were investigated by the Cochran-Armitage test and the Cox proportional hazards model, respectively. All statistical tests were two-sided. Results: One hundred fifty-six of 180 kinase phosphorylation sites, including ERK and RSK, were activated in CRPC cells, leading to increased phosphorylation of YB-1, which is a key molecule in the progression to CRPC. YB-1 signaling regulated AR V7 expression, and YB-1 inhibition augmented the anticancer effect of enzalutamide. Moreover, polymorphism (rs12030724) in the YB-1 gene affected YB-1 expression in 93 prostate cancer tissues (YB-1 positive rate; 14.3% in TT, 40.0% in AT, and 52.9% in AA, P = .04) and associated with probability of progression in 104 metastatic prostate cancer case patients (AT/TT vs AA, hazard ratio = 0.49, 95% confidence interval = 0.32 to 0.77, P = .001). Conclusions: YB-1 appears to be a promising target to inhibit the development of castration resistance, even at the AR variant-expressing stage. Polymorphism in the YB-1 gene may be a promising predictive biomarker in hormonal therapy.
AB - Background: Although androgen deprivation therapy for advanced prostate cancer initially exerts excellent anticancer effects, most prostate cancer treated with androgen deprivation therapy eventually recurs as castration-resistant prostate cancer (CRPC). Although aberrant kinase activation has been proposed as a mechanism of castration resistance, comprehensive kinase profiles in CRPC remain unknown. Therefore, we aimed to elucidate the kinome in CRPC as well as the role of key molecules. Methods: We utilized a kinome array in androgen-dependent LNCaP and castration-resistant CxR cells. The effect of Y-box binding protein-1 (YB-1) on androgen receptor (AR) expression was examined by quantitative polymerase chain reaction and western blot analysis. The association between polymorphisms in the YB-1 gene determined by genotyping and YB-1 expression evaluated by immunohistochemistry in prostate cancer tissues, as well as outcome in metastatic prostate cancer, were investigated by the Cochran-Armitage test and the Cox proportional hazards model, respectively. All statistical tests were two-sided. Results: One hundred fifty-six of 180 kinase phosphorylation sites, including ERK and RSK, were activated in CRPC cells, leading to increased phosphorylation of YB-1, which is a key molecule in the progression to CRPC. YB-1 signaling regulated AR V7 expression, and YB-1 inhibition augmented the anticancer effect of enzalutamide. Moreover, polymorphism (rs12030724) in the YB-1 gene affected YB-1 expression in 93 prostate cancer tissues (YB-1 positive rate; 14.3% in TT, 40.0% in AT, and 52.9% in AA, P = .04) and associated with probability of progression in 104 metastatic prostate cancer case patients (AT/TT vs AA, hazard ratio = 0.49, 95% confidence interval = 0.32 to 0.77, P = .001). Conclusions: YB-1 appears to be a promising target to inhibit the development of castration resistance, even at the AR variant-expressing stage. Polymorphism in the YB-1 gene may be a promising predictive biomarker in hormonal therapy.
UR - http://www.scopus.com/inward/record.url?scp=84979270691&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84979270691&partnerID=8YFLogxK
U2 - 10.1093/jnci/djw005
DO - 10.1093/jnci/djw005
M3 - Article
C2 - 26857528
AN - SCOPUS:84979270691
SN - 0027-8874
VL - 108
JO - Cancer chemotherapy reports. Part 1
JF - Cancer chemotherapy reports. Part 1
IS - 7
ER -