Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm

Michio Iwata, Longhao Yuan, Qibin Zhao, Yasuo Tabei, Francois Berenger, Ryusuke Sawada, Sayaka Akiyoshi, Momoko Hamano, Yoshihiro Yamanishi

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Motivation: Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell lines, which is a serious obstacle in practical applications. Results: Here, we developed a novel computational method to predict unknown parts of drug-induced gene expression profiles for various human cell lines and predict new drug therapeutic indications for a wide range of diseases. We proposed a tensor-train weighted optimization (TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately reconstruct drug-induced gene expression data for a range of human cell lines in the Library of Integrated Network-based Cellular Signatures. The results also revealed that in comparison with the use of original gene expression profiles, the use of imputed gene expression profiles improved the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indications for diseases with gene expression profiles, which suggested many potential drug indications that were not predicted by previous approaches. Supplementary information: Supplementary data are available at Bioinformatics online.

Original languageEnglish
Article numberbtz313
Pages (from-to)i191-i199
JournalBioinformatics
Volume35
Issue number14
DOIs
Publication statusPublished - Jul 15 2019

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm'. Together they form a unique fingerprint.

Cite this