Predicting rTMS effect for deciding stimulation parameters

Research output: Contribution to journalArticle

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is used in the medical field to modulate cortical excitability. However, when applied in this setting, rTMS stimulation parameters are not usually decided objectively. The aim of this study is to make a model that predicts the rTMS effect, allowing stimulation parameters (intensity and pulse number) to be easily determined before use. First, we investigated the relationship between stimulation condition and rTMS outcome. rTMS delivered at 1 Hz was applied with stimulation intensities of 85%, 100%, or 115% resting motor threshold (RMT) over the primary motor cortex in the left hemisphere. Motor-evoked potentials (MEPs) were measured before rTMS and after every 200 rTMS pulses. Eighteen hundred pulses were applied for each stimulation condition. Results showed that more pulses and stronger intensities lead to a larger decrease in MEP amplitude. An initial prediction model was then made by applying multiple regression analysis over the experimental data. We then adjusted the model depending on the size of the initial MEP amplitude before rTMS, and confirmed the improvement.

Fingerprint

Transcranial Magnetic Stimulation
Bioelectric potentials
Motor Evoked Potentials
Regression analysis
Motor Cortex
Regression Analysis

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Cite this

@article{a432377a273d4a97ac263239ef7b0465,
title = "Predicting rTMS effect for deciding stimulation parameters",
abstract = "Repetitive transcranial magnetic stimulation (rTMS) is used in the medical field to modulate cortical excitability. However, when applied in this setting, rTMS stimulation parameters are not usually decided objectively. The aim of this study is to make a model that predicts the rTMS effect, allowing stimulation parameters (intensity and pulse number) to be easily determined before use. First, we investigated the relationship between stimulation condition and rTMS outcome. rTMS delivered at 1 Hz was applied with stimulation intensities of 85{\%}, 100{\%}, or 115{\%} resting motor threshold (RMT) over the primary motor cortex in the left hemisphere. Motor-evoked potentials (MEPs) were measured before rTMS and after every 200 rTMS pulses. Eighteen hundred pulses were applied for each stimulation condition. Results showed that more pulses and stronger intensities lead to a larger decrease in MEP amplitude. An initial prediction model was then made by applying multiple regression analysis over the experimental data. We then adjusted the model depending on the size of the initial MEP amplitude before rTMS, and confirmed the improvement.",
author = "K. Nojima and Y. Katayama and K. Iramina",
year = "2013",
doi = "10.1109/EMBC.2013.6611011",
language = "English",
volume = "2013",
pages = "6369--6372",
journal = "Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Predicting rTMS effect for deciding stimulation parameters

AU - Nojima, K.

AU - Katayama, Y.

AU - Iramina, K.

PY - 2013

Y1 - 2013

N2 - Repetitive transcranial magnetic stimulation (rTMS) is used in the medical field to modulate cortical excitability. However, when applied in this setting, rTMS stimulation parameters are not usually decided objectively. The aim of this study is to make a model that predicts the rTMS effect, allowing stimulation parameters (intensity and pulse number) to be easily determined before use. First, we investigated the relationship between stimulation condition and rTMS outcome. rTMS delivered at 1 Hz was applied with stimulation intensities of 85%, 100%, or 115% resting motor threshold (RMT) over the primary motor cortex in the left hemisphere. Motor-evoked potentials (MEPs) were measured before rTMS and after every 200 rTMS pulses. Eighteen hundred pulses were applied for each stimulation condition. Results showed that more pulses and stronger intensities lead to a larger decrease in MEP amplitude. An initial prediction model was then made by applying multiple regression analysis over the experimental data. We then adjusted the model depending on the size of the initial MEP amplitude before rTMS, and confirmed the improvement.

AB - Repetitive transcranial magnetic stimulation (rTMS) is used in the medical field to modulate cortical excitability. However, when applied in this setting, rTMS stimulation parameters are not usually decided objectively. The aim of this study is to make a model that predicts the rTMS effect, allowing stimulation parameters (intensity and pulse number) to be easily determined before use. First, we investigated the relationship between stimulation condition and rTMS outcome. rTMS delivered at 1 Hz was applied with stimulation intensities of 85%, 100%, or 115% resting motor threshold (RMT) over the primary motor cortex in the left hemisphere. Motor-evoked potentials (MEPs) were measured before rTMS and after every 200 rTMS pulses. Eighteen hundred pulses were applied for each stimulation condition. Results showed that more pulses and stronger intensities lead to a larger decrease in MEP amplitude. An initial prediction model was then made by applying multiple regression analysis over the experimental data. We then adjusted the model depending on the size of the initial MEP amplitude before rTMS, and confirmed the improvement.

UR - http://www.scopus.com/inward/record.url?scp=84940102327&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84940102327&partnerID=8YFLogxK

U2 - 10.1109/EMBC.2013.6611011

DO - 10.1109/EMBC.2013.6611011

M3 - Article

C2 - 24111198

VL - 2013

SP - 6369

EP - 6372

JO - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

JF - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

SN - 1557-170X

ER -