Prediction of Critical Heat Flux for Subcooled Flow Boiling in Annulus and Transient Surface Temperature Change at CHF

Research output: Contribution to journalArticlepeer-review

Abstract

The ability to predict critical heat flux (CHF) is of considerable interest for high-heat equipment, including nuclear reactors. CHF prediction from a mechanistic model for subcooled flow boiling in rod bundles still remains unsolved. In this paper, we try to predict the CHF in an annulus, which is the most basic flow geometry simplified from a fuel bundle, using a liquid sublayer dryout model. The prediction is validated with both water and R113 data, showing an accuracy within ±30%. After the CHF in an annulus is calculated successfully, a near-wall vapor–liquid structure is proposed on the basis of the liquid sublayer dryout model. Modeling of heat transfer modes over the heating surface at CHF is performed, and predictions of the changes in liquid sublayer thickness and heater surface temperature at the CHF occurrence point are carried out by solving the heat conduction equation in cylindrical coordinates with a convective boundary condition, which changes with the change in flow pattern over the heating surface. Transient changes in the liquid sublayer thickness and surface temperature at the CHF occurrence point are reported.

Original languageEnglish
Article number230
JournalFluids
Volume2022
Issue number7
DOIs
Publication statusPublished - Jul 2022

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Prediction of Critical Heat Flux for Subcooled Flow Boiling in Annulus and Transient Surface Temperature Change at CHF'. Together they form a unique fingerprint.

Cite this