Preliminary analysis on the mobility of trace incompatible elements during the basalt and peridotite reaction under uppermost mantle conditions

Aiko Tominaga, Takumi Kato, Tomoaki Kubo, Masanori Kurosawa

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Reaction experiments were conducted between basalt (JB-1) and peridotite (JP-1) at 3 GPa and 1100 °C to investigate the mobility of trace elements migrated from basalt to peridotite and the behavior of incompatible trace elements under upper mantle conditions was studied. The stable phase assemblage of basalt is garnet + clinopyroxene + melt, while olivine + minor orthopyroxene, clinopyroxene and spinel recrystallize in peridotite under this experimental condition. A reaction zone consisting of garnet and orthopyroxene was formed at the interface between the basalt and peridotite layers. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICPMS) was used to determine the concentrations of the major and trace elements as a function of the distance from the reaction zone in the peridotite layer. The migration of the major elements (Mg, Fe, Ca and Al) was restricted to less than the size of a few grains (∼15 μm), from the interface of basalt and peridotite on both sides. In addition, the water content of the peridotite layer was not increased by migration from the hydrous basalt in the sample. On the other hand, the trace incompatible elements derived from the basalt penetrated deep into the peridotite layer beyond the reaction zone to some extent, and the relative abundance of each trace incompatible element showed a distinct dependence on the distance from the reaction zone. Therefore, the transportation is not explained by a small degree of fluid and/or melt infiltration. Elemental depth profiling data obtained by LA-ICPMS are successfully fitted to a semi-infinite diffusant model equation. The effective diffusion coefficients (D) show the following order: DNa ≈ DK ≈ DRb > DSr ≈ DZr ≈ DNb ≈ DBa ≈ DLa ≈ DCe ≈ DTh. DNa in peridotite is 3.3 ± 0.4 × 10-12 m2/s at 3 GPa and 1100 °C, which is about four times larger than D(Sr,Zr,Nb,Ba,La,Ce,Th). We suggest that the fundamental mechanism of mobility in the peridotite layer is likely to be grain boundary diffusion, and the diffusion coefficients of trace elements are shown to be related to their stability in the olivine crystal lattice. We further discuss the formation of the unique chemical heterogeneities in the mantle around the basaltic crust on the basis of the observed mobility difference in the trace incompatible elements.

Original languageEnglish
Pages (from-to)50-59
Number of pages10
JournalPhysics of the Earth and Planetary Interiors
Volume174
Issue number1-4
DOIs
Publication statusPublished - May 1 2009

Fingerprint

peridotite
trace elements
basalt
Earth mantle
trace element
mantle
inductively coupled plasma mass spectrometry
orthopyroxene
olivine
ablation
garnets
clinopyroxene
laser ablation
garnet
diffusion coefficient
mass spectrometry
laser
analysis
melt
plasma

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Geophysics
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science

Cite this

Preliminary analysis on the mobility of trace incompatible elements during the basalt and peridotite reaction under uppermost mantle conditions. / Tominaga, Aiko; Kato, Takumi; Kubo, Tomoaki; Kurosawa, Masanori.

In: Physics of the Earth and Planetary Interiors, Vol. 174, No. 1-4, 01.05.2009, p. 50-59.

Research output: Contribution to journalArticle

@article{e7ecba7b5a164e828254162114c992d8,
title = "Preliminary analysis on the mobility of trace incompatible elements during the basalt and peridotite reaction under uppermost mantle conditions",
abstract = "Reaction experiments were conducted between basalt (JB-1) and peridotite (JP-1) at 3 GPa and 1100 °C to investigate the mobility of trace elements migrated from basalt to peridotite and the behavior of incompatible trace elements under upper mantle conditions was studied. The stable phase assemblage of basalt is garnet + clinopyroxene + melt, while olivine + minor orthopyroxene, clinopyroxene and spinel recrystallize in peridotite under this experimental condition. A reaction zone consisting of garnet and orthopyroxene was formed at the interface between the basalt and peridotite layers. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICPMS) was used to determine the concentrations of the major and trace elements as a function of the distance from the reaction zone in the peridotite layer. The migration of the major elements (Mg, Fe, Ca and Al) was restricted to less than the size of a few grains (∼15 μm), from the interface of basalt and peridotite on both sides. In addition, the water content of the peridotite layer was not increased by migration from the hydrous basalt in the sample. On the other hand, the trace incompatible elements derived from the basalt penetrated deep into the peridotite layer beyond the reaction zone to some extent, and the relative abundance of each trace incompatible element showed a distinct dependence on the distance from the reaction zone. Therefore, the transportation is not explained by a small degree of fluid and/or melt infiltration. Elemental depth profiling data obtained by LA-ICPMS are successfully fitted to a semi-infinite diffusant model equation. The effective diffusion coefficients (D) show the following order: DNa ≈ DK ≈ DRb > DSr ≈ DZr ≈ DNb ≈ DBa ≈ DLa ≈ DCe ≈ DTh. DNa in peridotite is 3.3 ± 0.4 × 10-12 m2/s at 3 GPa and 1100 °C, which is about four times larger than D(Sr,Zr,Nb,Ba,La,Ce,Th). We suggest that the fundamental mechanism of mobility in the peridotite layer is likely to be grain boundary diffusion, and the diffusion coefficients of trace elements are shown to be related to their stability in the olivine crystal lattice. We further discuss the formation of the unique chemical heterogeneities in the mantle around the basaltic crust on the basis of the observed mobility difference in the trace incompatible elements.",
author = "Aiko Tominaga and Takumi Kato and Tomoaki Kubo and Masanori Kurosawa",
year = "2009",
month = "5",
day = "1",
doi = "10.1016/j.pepi.2008.09.019",
language = "English",
volume = "174",
pages = "50--59",
journal = "Physics of the Earth and Planetary Interiors",
issn = "0031-9201",
publisher = "Elsevier",
number = "1-4",

}

TY - JOUR

T1 - Preliminary analysis on the mobility of trace incompatible elements during the basalt and peridotite reaction under uppermost mantle conditions

AU - Tominaga, Aiko

AU - Kato, Takumi

AU - Kubo, Tomoaki

AU - Kurosawa, Masanori

PY - 2009/5/1

Y1 - 2009/5/1

N2 - Reaction experiments were conducted between basalt (JB-1) and peridotite (JP-1) at 3 GPa and 1100 °C to investigate the mobility of trace elements migrated from basalt to peridotite and the behavior of incompatible trace elements under upper mantle conditions was studied. The stable phase assemblage of basalt is garnet + clinopyroxene + melt, while olivine + minor orthopyroxene, clinopyroxene and spinel recrystallize in peridotite under this experimental condition. A reaction zone consisting of garnet and orthopyroxene was formed at the interface between the basalt and peridotite layers. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICPMS) was used to determine the concentrations of the major and trace elements as a function of the distance from the reaction zone in the peridotite layer. The migration of the major elements (Mg, Fe, Ca and Al) was restricted to less than the size of a few grains (∼15 μm), from the interface of basalt and peridotite on both sides. In addition, the water content of the peridotite layer was not increased by migration from the hydrous basalt in the sample. On the other hand, the trace incompatible elements derived from the basalt penetrated deep into the peridotite layer beyond the reaction zone to some extent, and the relative abundance of each trace incompatible element showed a distinct dependence on the distance from the reaction zone. Therefore, the transportation is not explained by a small degree of fluid and/or melt infiltration. Elemental depth profiling data obtained by LA-ICPMS are successfully fitted to a semi-infinite diffusant model equation. The effective diffusion coefficients (D) show the following order: DNa ≈ DK ≈ DRb > DSr ≈ DZr ≈ DNb ≈ DBa ≈ DLa ≈ DCe ≈ DTh. DNa in peridotite is 3.3 ± 0.4 × 10-12 m2/s at 3 GPa and 1100 °C, which is about four times larger than D(Sr,Zr,Nb,Ba,La,Ce,Th). We suggest that the fundamental mechanism of mobility in the peridotite layer is likely to be grain boundary diffusion, and the diffusion coefficients of trace elements are shown to be related to their stability in the olivine crystal lattice. We further discuss the formation of the unique chemical heterogeneities in the mantle around the basaltic crust on the basis of the observed mobility difference in the trace incompatible elements.

AB - Reaction experiments were conducted between basalt (JB-1) and peridotite (JP-1) at 3 GPa and 1100 °C to investigate the mobility of trace elements migrated from basalt to peridotite and the behavior of incompatible trace elements under upper mantle conditions was studied. The stable phase assemblage of basalt is garnet + clinopyroxene + melt, while olivine + minor orthopyroxene, clinopyroxene and spinel recrystallize in peridotite under this experimental condition. A reaction zone consisting of garnet and orthopyroxene was formed at the interface between the basalt and peridotite layers. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICPMS) was used to determine the concentrations of the major and trace elements as a function of the distance from the reaction zone in the peridotite layer. The migration of the major elements (Mg, Fe, Ca and Al) was restricted to less than the size of a few grains (∼15 μm), from the interface of basalt and peridotite on both sides. In addition, the water content of the peridotite layer was not increased by migration from the hydrous basalt in the sample. On the other hand, the trace incompatible elements derived from the basalt penetrated deep into the peridotite layer beyond the reaction zone to some extent, and the relative abundance of each trace incompatible element showed a distinct dependence on the distance from the reaction zone. Therefore, the transportation is not explained by a small degree of fluid and/or melt infiltration. Elemental depth profiling data obtained by LA-ICPMS are successfully fitted to a semi-infinite diffusant model equation. The effective diffusion coefficients (D) show the following order: DNa ≈ DK ≈ DRb > DSr ≈ DZr ≈ DNb ≈ DBa ≈ DLa ≈ DCe ≈ DTh. DNa in peridotite is 3.3 ± 0.4 × 10-12 m2/s at 3 GPa and 1100 °C, which is about four times larger than D(Sr,Zr,Nb,Ba,La,Ce,Th). We suggest that the fundamental mechanism of mobility in the peridotite layer is likely to be grain boundary diffusion, and the diffusion coefficients of trace elements are shown to be related to their stability in the olivine crystal lattice. We further discuss the formation of the unique chemical heterogeneities in the mantle around the basaltic crust on the basis of the observed mobility difference in the trace incompatible elements.

UR - http://www.scopus.com/inward/record.url?scp=67349159908&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67349159908&partnerID=8YFLogxK

U2 - 10.1016/j.pepi.2008.09.019

DO - 10.1016/j.pepi.2008.09.019

M3 - Article

AN - SCOPUS:67349159908

VL - 174

SP - 50

EP - 59

JO - Physics of the Earth and Planetary Interiors

JF - Physics of the Earth and Planetary Interiors

SN - 0031-9201

IS - 1-4

ER -