Preparation and Membrane Properties of Oxidized Ceramide Derivatives

Takaaki Matsufuji, Masanao Kinoshita, Anna Möuts, J. Peter Slotte, Nobuaki Matsumori

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Ceramide is a bioactive lipid with important roles in several biological processes including cell proliferation and apoptosis. Although 3-ketoceramides that contain a keto group in place of the 3-OH group of ceramide occur naturally, ceramide derivatives oxidized at the primary 1-OH group have not been identified to date. To evaluate how the oxidative state of the 1-OH group affects the physical properties of membranes, we prepared novel ceramide derivatives in which the 1-OH group was oxidized to a carboxylic acid (PCerCOOH) or methylester (PCerCOOMe) and examined the rigidity of their monolayers and the formation of gel domains in palmitoyloleoylphosphatidylcholine (POPC) or sphingomyelin (SM) bilayers. As a result, PCerCOOH and PCerCOOMe exhibited membrane properties similar to those of native ceramide, although the deprotonated form of PCerCOOH, PCerCOO-, exhibited markedly lower rigidity and higher miscibility with POPC and SM. This was attributed to the electrostatic repulsion of the negative charge, which hampered the formation of the ceramide-enriched gel domain. The similarities in the properties of PCerCOOMe and ceramide revealed the potential to introduce various functional groups onto PCerCOOH via ester or amide linkages; therefore, these derivatives will also provide a new strategy for developing molecular probes, such as fluorescent ceramides, and inhibitors of ceramide-related enzymes.

Original languageEnglish
Pages (from-to)465-471
Number of pages7
JournalLangmuir
Volume34
Issue number1
DOIs
Publication statusPublished - Jan 9 2018

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Preparation and Membrane Properties of Oxidized Ceramide Derivatives'. Together they form a unique fingerprint.

Cite this