TY - JOUR
T1 - Preparation and Reactivity of Hydrophobic Vitamin B12 Derivatives Having an Intramolecular Axial Base
AU - Murakami, Yukito
AU - Hisaeda, Yoshio
AU - Ozaki, Toshiaki
AU - Ohno, Teruhisa
AU - Tani, Yutaro
PY - 1988
Y1 - 1988
N2 - In order to clarify crucial roles of an intramolecular axial base in alkylation and dealkylation reactions of vitamin B12, hydrophobic vitamin B12 derivatives bearing a proximal base capable of coordinating to the nuclear cobalt at the α - and β-sites, [Cob(II)(α -Im)6 C1ester]ClO4 and [Cob(II)(β -Im)6 C2ester]C1O4, respectively, and a hydrophobic vitamin B12 capped with a fragment involving the imidazolyl moiety, [Cob(II)(Im: cap)5 C1ester]C1O4, were prepared. Their ESR spectra indicated that the three different imidazolyl moieties were completely coordinated to the nuclear cobalt, and such intramolecular coordination acted to shift the Co(II)/Co(I) redox potential to a cathodic side. The extent of potential shift was comparable to that observed upon addition of N-methylimidazole to a hydrophobic vitamin B12 without an axial base at a 50: 1 molar ratio. The axial base did not significantly show a kinetic effect on the alkylation of hydrophobic vitamin B12s, since the univalent cobalt has no detectable tendency to interact with an axial ligand. The imidazolyl segment introduced into the β-site inhibited alkylation reactions due to steric reasons. All the intramolecular axial bases treated in this study enhanced cleavage of the cobalt-carbon bond under aerobic irradiation conditions as originated from their steric and electronic effects.
AB - In order to clarify crucial roles of an intramolecular axial base in alkylation and dealkylation reactions of vitamin B12, hydrophobic vitamin B12 derivatives bearing a proximal base capable of coordinating to the nuclear cobalt at the α - and β-sites, [Cob(II)(α -Im)6 C1ester]ClO4 and [Cob(II)(β -Im)6 C2ester]C1O4, respectively, and a hydrophobic vitamin B12 capped with a fragment involving the imidazolyl moiety, [Cob(II)(Im: cap)5 C1ester]C1O4, were prepared. Their ESR spectra indicated that the three different imidazolyl moieties were completely coordinated to the nuclear cobalt, and such intramolecular coordination acted to shift the Co(II)/Co(I) redox potential to a cathodic side. The extent of potential shift was comparable to that observed upon addition of N-methylimidazole to a hydrophobic vitamin B12 without an axial base at a 50: 1 molar ratio. The axial base did not significantly show a kinetic effect on the alkylation of hydrophobic vitamin B12s, since the univalent cobalt has no detectable tendency to interact with an axial ligand. The imidazolyl segment introduced into the β-site inhibited alkylation reactions due to steric reasons. All the intramolecular axial bases treated in this study enhanced cleavage of the cobalt-carbon bond under aerobic irradiation conditions as originated from their steric and electronic effects.
UR - http://www.scopus.com/inward/record.url?scp=85018663165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018663165&partnerID=8YFLogxK
U2 - 10.1246/nikkashi.1988.445
DO - 10.1246/nikkashi.1988.445
M3 - Article
AN - SCOPUS:85018663165
SN - 0369-4577
VL - 1988
SP - 445
EP - 451
JO - Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal
JF - Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal
IS - 4
ER -