Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations

Pawel Strak, Pawel Kempisty, Maria Ptasinska, Stanislaw Krukowski

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

A critical comparison of three polarization based approaches with the fields in AlN/GaN multiple quantum wells (MQWs) systems proved that they give identical results. The direct density functional theory (DFT) results, i.e., the fields, are in qualitative agreement with data obtained within the polarization theory. The results of DFT calculations of an AlN/GaN MQW system were used in the projection method to obtain a spatial distribution of the bands in the structure with atomic resolution. In parallel, the plane averaged and c-smoothed potential profiles obtained from the solution of the Poisson equation were used to determine the electric field in the multiquantum well structures and the magnitude of dipole layers at the AlN/GaN heterostructures. The dipole layers cause potential jumps of about 2.4 V that seriously affects the band offsets. The presence of the dipole layer is in good agreement with the potential measurements by electron holography. It was shown that the wells of the width up to 4 Ga layers behave as potential minima, but the wider layers behave as standard quantum wells. The barriers up to 3 Al layers do not localize the carriers. It is shown that the Quantum Confined Stark Effect causes a huge decrease of their energies and oscillator strengths of the optical transitions, especially for wider structures. For wider wells, the strengths fall much faster for perpendicular polarization which indicates the important role of the anisotropic band offsets. A direct simulation shows that the band offset for the valence band crystal field split off hole states, i.e., pz states are different from heavy and light hole (i.e., p = p x ⊗ p y) states being equal to valence band offset (V B O) = 0.85 eV and rough estimate of V B O I I ≅ 0.5 eV, respectively. These values are in good agreement with the recently reported measurement of AlN/GaN offsets.

Original languageEnglish
Article number193706
JournalJournal of Applied Physics
Volume113
Issue number19
DOIs
Publication statusPublished - May 21 2013
Externally publishedYes

Fingerprint

physical properties
density functional theory
quantum wells
dipoles
valence
polarization
causes
Stark effect
Poisson equation
optical transition
holography
oscillator strengths
crystal field theory
spatial distribution
projection
electric fields
estimates
profiles
electrons
simulation

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations. / Strak, Pawel; Kempisty, Pawel; Ptasinska, Maria; Krukowski, Stanislaw.

In: Journal of Applied Physics, Vol. 113, No. 19, 193706, 21.05.2013.

Research output: Contribution to journalArticle

@article{dfcd4f67591346878c43342903d05625,
title = "Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations",
abstract = "A critical comparison of three polarization based approaches with the fields in AlN/GaN multiple quantum wells (MQWs) systems proved that they give identical results. The direct density functional theory (DFT) results, i.e., the fields, are in qualitative agreement with data obtained within the polarization theory. The results of DFT calculations of an AlN/GaN MQW system were used in the projection method to obtain a spatial distribution of the bands in the structure with atomic resolution. In parallel, the plane averaged and c-smoothed potential profiles obtained from the solution of the Poisson equation were used to determine the electric field in the multiquantum well structures and the magnitude of dipole layers at the AlN/GaN heterostructures. The dipole layers cause potential jumps of about 2.4 V that seriously affects the band offsets. The presence of the dipole layer is in good agreement with the potential measurements by electron holography. It was shown that the wells of the width up to 4 Ga layers behave as potential minima, but the wider layers behave as standard quantum wells. The barriers up to 3 Al layers do not localize the carriers. It is shown that the Quantum Confined Stark Effect causes a huge decrease of their energies and oscillator strengths of the optical transitions, especially for wider structures. For wider wells, the strengths fall much faster for perpendicular polarization which indicates the important role of the anisotropic band offsets. A direct simulation shows that the band offset for the valence band crystal field split off hole states, i.e., pz states are different from heavy and light hole (i.e., p = p x ⊗ p y) states being equal to valence band offset (V B O) = 0.85 eV and rough estimate of V B O I I ≅ 0.5 eV, respectively. These values are in good agreement with the recently reported measurement of AlN/GaN offsets.",
author = "Pawel Strak and Pawel Kempisty and Maria Ptasinska and Stanislaw Krukowski",
year = "2013",
month = "5",
day = "21",
doi = "10.1063/1.4805057",
language = "English",
volume = "113",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "19",

}

TY - JOUR

T1 - Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations

AU - Strak, Pawel

AU - Kempisty, Pawel

AU - Ptasinska, Maria

AU - Krukowski, Stanislaw

PY - 2013/5/21

Y1 - 2013/5/21

N2 - A critical comparison of three polarization based approaches with the fields in AlN/GaN multiple quantum wells (MQWs) systems proved that they give identical results. The direct density functional theory (DFT) results, i.e., the fields, are in qualitative agreement with data obtained within the polarization theory. The results of DFT calculations of an AlN/GaN MQW system were used in the projection method to obtain a spatial distribution of the bands in the structure with atomic resolution. In parallel, the plane averaged and c-smoothed potential profiles obtained from the solution of the Poisson equation were used to determine the electric field in the multiquantum well structures and the magnitude of dipole layers at the AlN/GaN heterostructures. The dipole layers cause potential jumps of about 2.4 V that seriously affects the band offsets. The presence of the dipole layer is in good agreement with the potential measurements by electron holography. It was shown that the wells of the width up to 4 Ga layers behave as potential minima, but the wider layers behave as standard quantum wells. The barriers up to 3 Al layers do not localize the carriers. It is shown that the Quantum Confined Stark Effect causes a huge decrease of their energies and oscillator strengths of the optical transitions, especially for wider structures. For wider wells, the strengths fall much faster for perpendicular polarization which indicates the important role of the anisotropic band offsets. A direct simulation shows that the band offset for the valence band crystal field split off hole states, i.e., pz states are different from heavy and light hole (i.e., p = p x ⊗ p y) states being equal to valence band offset (V B O) = 0.85 eV and rough estimate of V B O I I ≅ 0.5 eV, respectively. These values are in good agreement with the recently reported measurement of AlN/GaN offsets.

AB - A critical comparison of three polarization based approaches with the fields in AlN/GaN multiple quantum wells (MQWs) systems proved that they give identical results. The direct density functional theory (DFT) results, i.e., the fields, are in qualitative agreement with data obtained within the polarization theory. The results of DFT calculations of an AlN/GaN MQW system were used in the projection method to obtain a spatial distribution of the bands in the structure with atomic resolution. In parallel, the plane averaged and c-smoothed potential profiles obtained from the solution of the Poisson equation were used to determine the electric field in the multiquantum well structures and the magnitude of dipole layers at the AlN/GaN heterostructures. The dipole layers cause potential jumps of about 2.4 V that seriously affects the band offsets. The presence of the dipole layer is in good agreement with the potential measurements by electron holography. It was shown that the wells of the width up to 4 Ga layers behave as potential minima, but the wider layers behave as standard quantum wells. The barriers up to 3 Al layers do not localize the carriers. It is shown that the Quantum Confined Stark Effect causes a huge decrease of their energies and oscillator strengths of the optical transitions, especially for wider structures. For wider wells, the strengths fall much faster for perpendicular polarization which indicates the important role of the anisotropic band offsets. A direct simulation shows that the band offset for the valence band crystal field split off hole states, i.e., pz states are different from heavy and light hole (i.e., p = p x ⊗ p y) states being equal to valence band offset (V B O) = 0.85 eV and rough estimate of V B O I I ≅ 0.5 eV, respectively. These values are in good agreement with the recently reported measurement of AlN/GaN offsets.

UR - http://www.scopus.com/inward/record.url?scp=84878393932&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878393932&partnerID=8YFLogxK

U2 - 10.1063/1.4805057

DO - 10.1063/1.4805057

M3 - Article

AN - SCOPUS:84878393932

VL - 113

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 19

M1 - 193706

ER -