Processing ceramic proton conductor membranes for use in steam electrolysis

Kwati Leonard, Wendelin Deibert, Mariya E. Ivanova, Wilhelm A. Meulenberg, Tatsumi Ishihara, Hiroshige Matsumoto

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Steam electrolysis constitutes a prospective technology for industrial-scale hydrogen production. The use of ceramic proton-conducting electrolytes is a beneficial option for lowering the operating temperature. However, a significant challenge with this type of electrolyte has been upscaling robust planar type devices. The fabrication of such multi-layered devices, usually via a tape casting process, requires careful control of individual layers’ shrinkages to prevent warping and cracks during sintering. The present work highlights the successful processing of 50 × 50 mm2 planar electrode-supported barium cerium yttrium zirconate BaZr0.44 Ce0.36 Y0.2 O2.9 (BZCY(54)8/9 2) half cells via a sequential tape casting approach. The sintering parameters of the half-cells were analyzed and adjusted to obtain defect-free half-cells with diminished warping. Suitably dense and gas-tight electrolyte layers are obtained after co-sintering at 1350 C for 5 h. We then assembled an electrolysis cell using Ba0.5 La0.5 CoO3−δ as the steam electrode, screen printed on the electrolyte layer, and fired at 800 C. A typical Ba0.5 La0.5 CoO3−δ |BaZr0.44 Ce0.36 Y0.2 O3−δ (15 µm)|NiO-SrZr0.5 Ce0.4 Y0.1 O3−δ cell at 600 C with 80% steam in the anode compartment reached reproducible terminal voltages of 1.4 V @ 500 mA·cm−2, achieving ~84% Faradaic efficiency. Besides electrochemical characterization, the morphology and microstructure of the layered half-cells were analyzed by a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy. Our results also provide a feasible approach for realizing the low-cost fabrication of large-sized protonic ceramic conducting electrolysis cells (PCECs).

Original languageEnglish
Article number339
Pages (from-to)1-18
Number of pages18
JournalMembranes
Volume10
Issue number11
DOIs
Publication statusPublished - Nov 2020

All Science Journal Classification (ASJC) codes

  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology
  • Filtration and Separation

Fingerprint

Dive into the research topics of 'Processing ceramic proton conductor membranes for use in steam electrolysis'. Together they form a unique fingerprint.

Cite this