Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii

Santisak Kitjanukit, Keiko Sasaki, Naoko Okibe

Research output: Contribution to journalArticle

Abstract

The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14–63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl, it was possible to conversely utilize the effect of Cl to produce even finer and denser particles in the range of 8.7–15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)–chloride complex at elevated Cl concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.

Original languageEnglish
Pages (from-to)549-556
Number of pages8
JournalExtremophiles
Volume23
Issue number5
DOIs
Publication statusPublished - Sep 2 2019

Fingerprint

Sulfolobus
formic acid
Particle Size
Nanoparticles
Chlorides
Archaea
Electrons

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Medicine

Cite this

Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii. / Kitjanukit, Santisak; Sasaki, Keiko; Okibe, Naoko.

In: Extremophiles, Vol. 23, No. 5, 02.09.2019, p. 549-556.

Research output: Contribution to journalArticle

@article{9f61383d1d3243c6a2e26a53d961c585,
title = "Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii",
abstract = "The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14–63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl−, it was possible to conversely utilize the effect of Cl− to produce even finer and denser particles in the range of 8.7–15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)–chloride complex at elevated Cl− concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl− (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.",
author = "Santisak Kitjanukit and Keiko Sasaki and Naoko Okibe",
year = "2019",
month = "9",
day = "2",
doi = "10.1007/s00792-019-01106-7",
language = "English",
volume = "23",
pages = "549--556",
journal = "Extremophiles",
issn = "1431-0651",
publisher = "Springer Japan",
number = "5",

}

TY - JOUR

T1 - Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii

AU - Kitjanukit, Santisak

AU - Sasaki, Keiko

AU - Okibe, Naoko

PY - 2019/9/2

Y1 - 2019/9/2

N2 - The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14–63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl−, it was possible to conversely utilize the effect of Cl− to produce even finer and denser particles in the range of 8.7–15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)–chloride complex at elevated Cl− concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl− (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.

AB - The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14–63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl−, it was possible to conversely utilize the effect of Cl− to produce even finer and denser particles in the range of 8.7–15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)–chloride complex at elevated Cl− concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl− (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.

UR - http://www.scopus.com/inward/record.url?scp=85067695846&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067695846&partnerID=8YFLogxK

U2 - 10.1007/s00792-019-01106-7

DO - 10.1007/s00792-019-01106-7

M3 - Article

VL - 23

SP - 549

EP - 556

JO - Extremophiles

JF - Extremophiles

SN - 1431-0651

IS - 5

ER -