Production of Raphanus sativus (C3)-Moricandia arvensis (C3-C4 intermediate) monosomic and disomic addition lines with each parental cytoplasmic background and their photorespiratory characteristics

Sang Woo Bang, Osamu Ueno, Yoshiharu Wada, Soon Kang Hong, Yukio Kaneko, Yasuo Matsuzawa

Research output: Contribution to journalReview article

6 Citations (Scopus)

Abstract

We are maintaining five Moricandia arvensis monosomic addition lines of Raphanus sativus carrying R. sativus cytoplasm (autoplasmic MALs) and twelve M. arvensis MALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic MALs) from BC6 to BC8 generation, and newly produced five M. arvensis disomic addition lines of R. sativus (autoplasmic DALs) and seven M. arvensis DALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic DALs) from selfing and sib-crossing of the MALs and DALs in S3BC5 and S2BC6 generations. The structural, biochemical and physiological characteristics related to photorespiration of these MALs and DALs were compared to study the genetic mechanisms of the C3-C4 intermediate photosynthesis in the individual chromosomes of M. arvensis. The CO2 compensation point of the autoplasmic and alloplasmic DALs (RMa-b and MaR-b DALs) with one pair of M. arvensis 'b' chromosome were 29.4 and 30.1 μmol mol-1, respectively, which were significantly lower than that of other DALs and MALs as well as R. sativus (34.5 μmol mol-1). An immunogold electron microscopic study of the P-protein of glycine decarboxylase (GDC) in photosynthetic cells of the RMa-b DAL revealed that the bundle sheath cell (BSC) mitochondria were more intensively labeled for the protein than the mesophyll cell (MC) mitochondria. The ratio of the labeling density of the BSC mitochondria to that of the MC mitochondria was 1.13, which lies between values in M. arvensis (2.66) and R. sativus (0.76). These data suggest that the 'b' chromosome of M. arvensis genome controls the expression of C3-C4 intermediate characteristics.

Original languageEnglish
Pages (from-to)70-79
Number of pages10
JournalPlant Production Science
Volume12
Issue number1
DOIs
Publication statusPublished - Mar 11 2009

Fingerprint

Moricandia arvensis
monosomics
disomics
Raphanus sativus
mitochondria
bundle sheath cells
cytoplasm
chromosomes
mesophyll
photorespiration
cells
selfing

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science

Cite this

Production of Raphanus sativus (C3)-Moricandia arvensis (C3-C4 intermediate) monosomic and disomic addition lines with each parental cytoplasmic background and their photorespiratory characteristics. / Bang, Sang Woo; Ueno, Osamu; Wada, Yoshiharu; Hong, Soon Kang; Kaneko, Yukio; Matsuzawa, Yasuo.

In: Plant Production Science, Vol. 12, No. 1, 11.03.2009, p. 70-79.

Research output: Contribution to journalReview article

@article{125a40b6e0b14fc8b250e200ca913fca,
title = "Production of Raphanus sativus (C3)-Moricandia arvensis (C3-C4 intermediate) monosomic and disomic addition lines with each parental cytoplasmic background and their photorespiratory characteristics",
abstract = "We are maintaining five Moricandia arvensis monosomic addition lines of Raphanus sativus carrying R. sativus cytoplasm (autoplasmic MALs) and twelve M. arvensis MALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic MALs) from BC6 to BC8 generation, and newly produced five M. arvensis disomic addition lines of R. sativus (autoplasmic DALs) and seven M. arvensis DALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic DALs) from selfing and sib-crossing of the MALs and DALs in S3BC5 and S2BC6 generations. The structural, biochemical and physiological characteristics related to photorespiration of these MALs and DALs were compared to study the genetic mechanisms of the C3-C4 intermediate photosynthesis in the individual chromosomes of M. arvensis. The CO2 compensation point of the autoplasmic and alloplasmic DALs (RMa-b and MaR-b DALs) with one pair of M. arvensis 'b' chromosome were 29.4 and 30.1 μmol mol-1, respectively, which were significantly lower than that of other DALs and MALs as well as R. sativus (34.5 μmol mol-1). An immunogold electron microscopic study of the P-protein of glycine decarboxylase (GDC) in photosynthetic cells of the RMa-b DAL revealed that the bundle sheath cell (BSC) mitochondria were more intensively labeled for the protein than the mesophyll cell (MC) mitochondria. The ratio of the labeling density of the BSC mitochondria to that of the MC mitochondria was 1.13, which lies between values in M. arvensis (2.66) and R. sativus (0.76). These data suggest that the 'b' chromosome of M. arvensis genome controls the expression of C3-C4 intermediate characteristics.",
author = "Bang, {Sang Woo} and Osamu Ueno and Yoshiharu Wada and Hong, {Soon Kang} and Yukio Kaneko and Yasuo Matsuzawa",
year = "2009",
month = "3",
day = "11",
doi = "10.1626/pps.12.70",
language = "English",
volume = "12",
pages = "70--79",
journal = "Plant Production Science",
issn = "1343-943X",
publisher = "Crop Science Society of Japan",
number = "1",

}

TY - JOUR

T1 - Production of Raphanus sativus (C3)-Moricandia arvensis (C3-C4 intermediate) monosomic and disomic addition lines with each parental cytoplasmic background and their photorespiratory characteristics

AU - Bang, Sang Woo

AU - Ueno, Osamu

AU - Wada, Yoshiharu

AU - Hong, Soon Kang

AU - Kaneko, Yukio

AU - Matsuzawa, Yasuo

PY - 2009/3/11

Y1 - 2009/3/11

N2 - We are maintaining five Moricandia arvensis monosomic addition lines of Raphanus sativus carrying R. sativus cytoplasm (autoplasmic MALs) and twelve M. arvensis MALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic MALs) from BC6 to BC8 generation, and newly produced five M. arvensis disomic addition lines of R. sativus (autoplasmic DALs) and seven M. arvensis DALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic DALs) from selfing and sib-crossing of the MALs and DALs in S3BC5 and S2BC6 generations. The structural, biochemical and physiological characteristics related to photorespiration of these MALs and DALs were compared to study the genetic mechanisms of the C3-C4 intermediate photosynthesis in the individual chromosomes of M. arvensis. The CO2 compensation point of the autoplasmic and alloplasmic DALs (RMa-b and MaR-b DALs) with one pair of M. arvensis 'b' chromosome were 29.4 and 30.1 μmol mol-1, respectively, which were significantly lower than that of other DALs and MALs as well as R. sativus (34.5 μmol mol-1). An immunogold electron microscopic study of the P-protein of glycine decarboxylase (GDC) in photosynthetic cells of the RMa-b DAL revealed that the bundle sheath cell (BSC) mitochondria were more intensively labeled for the protein than the mesophyll cell (MC) mitochondria. The ratio of the labeling density of the BSC mitochondria to that of the MC mitochondria was 1.13, which lies between values in M. arvensis (2.66) and R. sativus (0.76). These data suggest that the 'b' chromosome of M. arvensis genome controls the expression of C3-C4 intermediate characteristics.

AB - We are maintaining five Moricandia arvensis monosomic addition lines of Raphanus sativus carrying R. sativus cytoplasm (autoplasmic MALs) and twelve M. arvensis MALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic MALs) from BC6 to BC8 generation, and newly produced five M. arvensis disomic addition lines of R. sativus (autoplasmic DALs) and seven M. arvensis DALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic DALs) from selfing and sib-crossing of the MALs and DALs in S3BC5 and S2BC6 generations. The structural, biochemical and physiological characteristics related to photorespiration of these MALs and DALs were compared to study the genetic mechanisms of the C3-C4 intermediate photosynthesis in the individual chromosomes of M. arvensis. The CO2 compensation point of the autoplasmic and alloplasmic DALs (RMa-b and MaR-b DALs) with one pair of M. arvensis 'b' chromosome were 29.4 and 30.1 μmol mol-1, respectively, which were significantly lower than that of other DALs and MALs as well as R. sativus (34.5 μmol mol-1). An immunogold electron microscopic study of the P-protein of glycine decarboxylase (GDC) in photosynthetic cells of the RMa-b DAL revealed that the bundle sheath cell (BSC) mitochondria were more intensively labeled for the protein than the mesophyll cell (MC) mitochondria. The ratio of the labeling density of the BSC mitochondria to that of the MC mitochondria was 1.13, which lies between values in M. arvensis (2.66) and R. sativus (0.76). These data suggest that the 'b' chromosome of M. arvensis genome controls the expression of C3-C4 intermediate characteristics.

UR - http://www.scopus.com/inward/record.url?scp=61649115641&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=61649115641&partnerID=8YFLogxK

U2 - 10.1626/pps.12.70

DO - 10.1626/pps.12.70

M3 - Review article

AN - SCOPUS:61649115641

VL - 12

SP - 70

EP - 79

JO - Plant Production Science

JF - Plant Production Science

SN - 1343-943X

IS - 1

ER -