TY - JOUR
T1 - Prognostic models in patients with non-small-cell lung cancer using artificial neural networks in comparison with logistic regression
AU - Hanai, Taizo
AU - Yatabe, Yasushi
AU - Nakayama, Yusuke
AU - Takahashi, Takashi
AU - Honda, Hiroyuki
AU - Mitsudomi, Tetsuya
AU - Kobayashi, Takeshi
PY - 2003/5/1
Y1 - 2003/5/1
N2 - It is difficult to precisely predict the outcome of each individual patient with non-small-cell lung cancer (NSCLC) by using conventional statistical methods and ordinary clinico-pathological variables. We applied artificial neural networks (ANN) for this purpose. We constructed a prognostic model for 125 NSCLC patients with 17 potential input variables, including 12 clinico-pathological variables (age, sex, smoking index, tumor size, p factor, pT, pN, stage, histology) and 5 immunohistochemical variables (p27 percentage, p27 intensity, p53, cyclin D1, retinoblastoma (RB)), by using the parameter-increasing method (PIM). Using the resultant ANN model, prediction was possible in 104 of 125 patients (83%, judgment ratio (JR)) and accuracy for prediction of survival at 5 years was 87%. On the other hand, JR and survival prediction accuracy in the logistic regression (LR) model were 37% and 78%, respectively. In addition, ANN out-performed LR for prediction of survival at 1 or 3 years. In these cases, PIM selected p27 intensity and cyclin D1 for the 3-year survival model and p53 for the 1-year survival model in addition to clinico-pathological variables. Finally, even in an independent validation data set of 48 patients, who underwent surgery 10 years later, the present ANN model could predict outcome of patients at 5 years with the JR and accuracy of 81% and 77%, respectively. This study demonstrates that ANN is a potentially more useful tool than conventional statistical methods for predicting survival of patients with NSCLC and that inclusion of relevant molecular markers as input variables enhances its predictive ability.
AB - It is difficult to precisely predict the outcome of each individual patient with non-small-cell lung cancer (NSCLC) by using conventional statistical methods and ordinary clinico-pathological variables. We applied artificial neural networks (ANN) for this purpose. We constructed a prognostic model for 125 NSCLC patients with 17 potential input variables, including 12 clinico-pathological variables (age, sex, smoking index, tumor size, p factor, pT, pN, stage, histology) and 5 immunohistochemical variables (p27 percentage, p27 intensity, p53, cyclin D1, retinoblastoma (RB)), by using the parameter-increasing method (PIM). Using the resultant ANN model, prediction was possible in 104 of 125 patients (83%, judgment ratio (JR)) and accuracy for prediction of survival at 5 years was 87%. On the other hand, JR and survival prediction accuracy in the logistic regression (LR) model were 37% and 78%, respectively. In addition, ANN out-performed LR for prediction of survival at 1 or 3 years. In these cases, PIM selected p27 intensity and cyclin D1 for the 3-year survival model and p53 for the 1-year survival model in addition to clinico-pathological variables. Finally, even in an independent validation data set of 48 patients, who underwent surgery 10 years later, the present ANN model could predict outcome of patients at 5 years with the JR and accuracy of 81% and 77%, respectively. This study demonstrates that ANN is a potentially more useful tool than conventional statistical methods for predicting survival of patients with NSCLC and that inclusion of relevant molecular markers as input variables enhances its predictive ability.
UR - http://www.scopus.com/inward/record.url?scp=0038081320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038081320&partnerID=8YFLogxK
U2 - 10.1111/j.1349-7006.2003.tb01467.x
DO - 10.1111/j.1349-7006.2003.tb01467.x
M3 - Article
C2 - 12824896
AN - SCOPUS:0038081320
SN - 1347-9032
VL - 94
SP - 473
EP - 477
JO - Cancer Science
JF - Cancer Science
IS - 5
ER -