Programmed cell death (apoptosis) of mouse fibroblasts is induced by the topoisomerase II inhibitor etoposide

Kazuhiro Mizumoto, Ronald J. Rothman, John L. Farber

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

The mechanism by which etoposide, a topoisomerase II inhibitor, killed replicating mouse L929 fibroblasts was investigated. Etoposide at 10 μM killed 70% of the cells within 4 days, a result that was accompanied by DNA fragmentation. A characteristic 'ladder' pattern of DNA fragmentation was confirmed by agarose gel electrophoresis. Simultaneous exposure of the cells to 10 μM etoposide plus 1 μM cycloheximide reduced both the extent of cell killing and the fragmentation of DNA. Delayed addition of cycloheximide protected cells only if cycloheximide was added 1-6 hr after exposure to etoposide. When added 6-24 hr after treatment with etoposide, cycloheximide lost the ability to protect cells. Cell growth was completely inhibited by either etoposide or cycloheximide. Furthermore, DNA synthesis was inhibited by either etoposide or cycloheximide within 6 hr. Protein synthesis, however, was not inhibited by etoposide. Thus, the ability of cycloheximide to protect cells correlated with inhibition of protein synthesis, rather than inhibition of DNA synthesis. A 1-hr exposure to 2.5 mM N-methyl-N-nitrosourea similarly inhibited DNA synthesis within 6 hr, without affecting protein synthesis. However, no loss of viability accompanied N-methyl-N-nitrosourea treatment. Thus, an imbalance between protein synthesis and DNA synthesis cannot explain the cell killing by etoposide. H-7, a protein kinase C inhibitor, prevented the cell killing and DNA fragmentation, whereas aurintricarboxylic acid, an endonuclease inhibitor, reduced the extent of DNA fragmentation but did not have an effect on cell killing. The data document that the killing of replicating mouse fibroblasts by etoposide represents an example of programmed cell death (apoptosis) that depends on protein synthesis. Although protein synthesis is required during the first 24 hr of exposure to etoposide, cell death is delayed until several days later.

Original languageEnglish
Pages (from-to)890-895
Number of pages6
JournalMolecular Pharmacology
Volume46
Issue number5
Publication statusPublished - Nov 1994

Fingerprint

Topoisomerase II Inhibitors
Etoposide
Cell Death
Fibroblasts
Apoptosis
Cycloheximide
DNA Fragmentation
Methylnitrosourea
Proteins
DNA
Aurintricarboxylic Acid
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
Agar Gel Electrophoresis
Protein C Inhibitor
Endonucleases
Protein Kinase Inhibitors
Protein Kinase C

All Science Journal Classification (ASJC) codes

  • Pharmacology

Cite this

Programmed cell death (apoptosis) of mouse fibroblasts is induced by the topoisomerase II inhibitor etoposide. / Mizumoto, Kazuhiro; Rothman, Ronald J.; Farber, John L.

In: Molecular Pharmacology, Vol. 46, No. 5, 11.1994, p. 890-895.

Research output: Contribution to journalArticle

@article{a9ba0da7fa1c4d9489d40fbb80197a98,
title = "Programmed cell death (apoptosis) of mouse fibroblasts is induced by the topoisomerase II inhibitor etoposide",
abstract = "The mechanism by which etoposide, a topoisomerase II inhibitor, killed replicating mouse L929 fibroblasts was investigated. Etoposide at 10 μM killed 70{\%} of the cells within 4 days, a result that was accompanied by DNA fragmentation. A characteristic 'ladder' pattern of DNA fragmentation was confirmed by agarose gel electrophoresis. Simultaneous exposure of the cells to 10 μM etoposide plus 1 μM cycloheximide reduced both the extent of cell killing and the fragmentation of DNA. Delayed addition of cycloheximide protected cells only if cycloheximide was added 1-6 hr after exposure to etoposide. When added 6-24 hr after treatment with etoposide, cycloheximide lost the ability to protect cells. Cell growth was completely inhibited by either etoposide or cycloheximide. Furthermore, DNA synthesis was inhibited by either etoposide or cycloheximide within 6 hr. Protein synthesis, however, was not inhibited by etoposide. Thus, the ability of cycloheximide to protect cells correlated with inhibition of protein synthesis, rather than inhibition of DNA synthesis. A 1-hr exposure to 2.5 mM N-methyl-N-nitrosourea similarly inhibited DNA synthesis within 6 hr, without affecting protein synthesis. However, no loss of viability accompanied N-methyl-N-nitrosourea treatment. Thus, an imbalance between protein synthesis and DNA synthesis cannot explain the cell killing by etoposide. H-7, a protein kinase C inhibitor, prevented the cell killing and DNA fragmentation, whereas aurintricarboxylic acid, an endonuclease inhibitor, reduced the extent of DNA fragmentation but did not have an effect on cell killing. The data document that the killing of replicating mouse fibroblasts by etoposide represents an example of programmed cell death (apoptosis) that depends on protein synthesis. Although protein synthesis is required during the first 24 hr of exposure to etoposide, cell death is delayed until several days later.",
author = "Kazuhiro Mizumoto and Rothman, {Ronald J.} and Farber, {John L.}",
year = "1994",
month = "11",
language = "English",
volume = "46",
pages = "890--895",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "5",

}

TY - JOUR

T1 - Programmed cell death (apoptosis) of mouse fibroblasts is induced by the topoisomerase II inhibitor etoposide

AU - Mizumoto, Kazuhiro

AU - Rothman, Ronald J.

AU - Farber, John L.

PY - 1994/11

Y1 - 1994/11

N2 - The mechanism by which etoposide, a topoisomerase II inhibitor, killed replicating mouse L929 fibroblasts was investigated. Etoposide at 10 μM killed 70% of the cells within 4 days, a result that was accompanied by DNA fragmentation. A characteristic 'ladder' pattern of DNA fragmentation was confirmed by agarose gel electrophoresis. Simultaneous exposure of the cells to 10 μM etoposide plus 1 μM cycloheximide reduced both the extent of cell killing and the fragmentation of DNA. Delayed addition of cycloheximide protected cells only if cycloheximide was added 1-6 hr after exposure to etoposide. When added 6-24 hr after treatment with etoposide, cycloheximide lost the ability to protect cells. Cell growth was completely inhibited by either etoposide or cycloheximide. Furthermore, DNA synthesis was inhibited by either etoposide or cycloheximide within 6 hr. Protein synthesis, however, was not inhibited by etoposide. Thus, the ability of cycloheximide to protect cells correlated with inhibition of protein synthesis, rather than inhibition of DNA synthesis. A 1-hr exposure to 2.5 mM N-methyl-N-nitrosourea similarly inhibited DNA synthesis within 6 hr, without affecting protein synthesis. However, no loss of viability accompanied N-methyl-N-nitrosourea treatment. Thus, an imbalance between protein synthesis and DNA synthesis cannot explain the cell killing by etoposide. H-7, a protein kinase C inhibitor, prevented the cell killing and DNA fragmentation, whereas aurintricarboxylic acid, an endonuclease inhibitor, reduced the extent of DNA fragmentation but did not have an effect on cell killing. The data document that the killing of replicating mouse fibroblasts by etoposide represents an example of programmed cell death (apoptosis) that depends on protein synthesis. Although protein synthesis is required during the first 24 hr of exposure to etoposide, cell death is delayed until several days later.

AB - The mechanism by which etoposide, a topoisomerase II inhibitor, killed replicating mouse L929 fibroblasts was investigated. Etoposide at 10 μM killed 70% of the cells within 4 days, a result that was accompanied by DNA fragmentation. A characteristic 'ladder' pattern of DNA fragmentation was confirmed by agarose gel electrophoresis. Simultaneous exposure of the cells to 10 μM etoposide plus 1 μM cycloheximide reduced both the extent of cell killing and the fragmentation of DNA. Delayed addition of cycloheximide protected cells only if cycloheximide was added 1-6 hr after exposure to etoposide. When added 6-24 hr after treatment with etoposide, cycloheximide lost the ability to protect cells. Cell growth was completely inhibited by either etoposide or cycloheximide. Furthermore, DNA synthesis was inhibited by either etoposide or cycloheximide within 6 hr. Protein synthesis, however, was not inhibited by etoposide. Thus, the ability of cycloheximide to protect cells correlated with inhibition of protein synthesis, rather than inhibition of DNA synthesis. A 1-hr exposure to 2.5 mM N-methyl-N-nitrosourea similarly inhibited DNA synthesis within 6 hr, without affecting protein synthesis. However, no loss of viability accompanied N-methyl-N-nitrosourea treatment. Thus, an imbalance between protein synthesis and DNA synthesis cannot explain the cell killing by etoposide. H-7, a protein kinase C inhibitor, prevented the cell killing and DNA fragmentation, whereas aurintricarboxylic acid, an endonuclease inhibitor, reduced the extent of DNA fragmentation but did not have an effect on cell killing. The data document that the killing of replicating mouse fibroblasts by etoposide represents an example of programmed cell death (apoptosis) that depends on protein synthesis. Although protein synthesis is required during the first 24 hr of exposure to etoposide, cell death is delayed until several days later.

UR - http://www.scopus.com/inward/record.url?scp=0028149572&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028149572&partnerID=8YFLogxK

M3 - Article

C2 - 7969076

AN - SCOPUS:0028149572

VL - 46

SP - 890

EP - 895

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 5

ER -