Proper regulation of inositolphosphorylceramide levels is required for acquirement of low pH resistance in budding yeast

Mikiko Otsu, Moeko Toume, Yutaro Yamaguchi, Motohiro Tani

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

All organisms have stress response systems to protect themselves from various environmental stresses, and regulation of membrane lipids is thought to play an important role in acquirement of stress tolerance. Complex sphingolipids in the yeast Saccharomyces cerevisiae are classified into three types based on differences in the structure of the polar head group, and the compositions and quantities of complex sphingolipids in biomembranes are tightly regulated. In this study, we found that the accumulation of inositol phosphorylceramides (IPCs) due to a defect of mannosylinositol phosphorylceramide biosynthesis (sur1∆ csh1∆), i.e., disruption of the balance of the composition of complex sphingolipids, causes hypersensitivity to low pH conditions (pH 4.0–2.5). Furthermore, screening of suppressor mutations that confer low pH resistance to sur1∆ csh1∆ cells revealed that a change in ergosterol homeostasis at plasma membranes can rescue the hypersensitivity, suggesting the functional relationship between complex sphingolipids and ergosterol under low pH conditions. Under low pH conditions, wild-type yeast cells exhibited decreases in IPC levels, and forced enhancement of the biosynthesis of IPCs causes low pH hypersensitivity. Thus, it was suggested that the accumulation of IPCs is detrimental to yeast under low pH conditions, and downregulation of IPC levels is one of the adaptation mechanisms for low pH conditions.

Original languageEnglish
Article number10792
JournalScientific reports
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Proper regulation of inositolphosphorylceramide levels is required for acquirement of low pH resistance in budding yeast'. Together they form a unique fingerprint.

  • Cite this