Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1

Eri Ishikawa, Hidetaka Kosako, Tomoharu Yasuda, Masaki Ohmuraya, Kimi Araki, Tomohiro Kurosaki, Takashi Saito, Sho Yamasaki

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+ CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD-SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development.

Original languageEnglish
Article number12756
JournalNature communications
Volume7
DOIs
Publication statusPublished - Sep 27 2016

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1'. Together they form a unique fingerprint.

Cite this