TY - JOUR
T1 - Pt catalytic effects on a resistive oxygen sensor using Ce 0.9Zr0.1O2 thick film in rich conditions
AU - Izu, Noriya
AU - Shin, Woosuck
AU - Matsubara, Ichiro
AU - Itoh, Toshio
AU - Nishibori, Maiko
AU - Murayama, Norimitsu
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2010/3
Y1 - 2010/3
N2 - In this study, we investigated the Pt catalyst effects on two structures through loading a Pt catalyst onto a resistive oxygen sensor using Ce 0.9Zr0.1O2 thick film. We used (1) Ce 0.9Zr0.1O2 thick film with a Pt/alumina layer, and (2) Pt/Ce0.9Zr0.1O2 thick film, in which Pt catalysts were prepared by heating platinum chloride. In the case of sensor structure (1), it became clear that the Pt/alumina layer with a Pt concentration of 40 wt% was the most effective in the Pt/alumina layers fabricated in this study, where R(λ = 0.6)/R(λ = 1.4) was 0.0099, and R(λ = 0.6)/R(λ = 1.4) of the 40 wt% Pt/alumina layer decreased with decreasing temperature. In the case of sensor structure (2), the minimum values of R(λ = 0.6)/R(λ = 1.4) at 600 and 700°C were the same at 0.035. The ultrasonic treatment in the Pt loading process improved R(λ = 0.6)/R(λ = 1.4) to 0.02. The Pt particle size in this study was in a range from 20 to 100 nm because of the high temperature annealing in the Pt loading process.
AB - In this study, we investigated the Pt catalyst effects on two structures through loading a Pt catalyst onto a resistive oxygen sensor using Ce 0.9Zr0.1O2 thick film. We used (1) Ce 0.9Zr0.1O2 thick film with a Pt/alumina layer, and (2) Pt/Ce0.9Zr0.1O2 thick film, in which Pt catalysts were prepared by heating platinum chloride. In the case of sensor structure (1), it became clear that the Pt/alumina layer with a Pt concentration of 40 wt% was the most effective in the Pt/alumina layers fabricated in this study, where R(λ = 0.6)/R(λ = 1.4) was 0.0099, and R(λ = 0.6)/R(λ = 1.4) of the 40 wt% Pt/alumina layer decreased with decreasing temperature. In the case of sensor structure (2), the minimum values of R(λ = 0.6)/R(λ = 1.4) at 600 and 700°C were the same at 0.035. The ultrasonic treatment in the Pt loading process improved R(λ = 0.6)/R(λ = 1.4) to 0.02. The Pt particle size in this study was in a range from 20 to 100 nm because of the high temperature annealing in the Pt loading process.
UR - http://www.scopus.com/inward/record.url?scp=77949536326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949536326&partnerID=8YFLogxK
U2 - 10.2109/jcersj2.118.175
DO - 10.2109/jcersj2.118.175
M3 - Article
AN - SCOPUS:77949536326
VL - 118
SP - 175
EP - 179
JO - Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan
JF - Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan
SN - 1882-0743
IS - 1375
ER -