Pulmonary arterial input impedance reflects the mechanical properties of pulmonary arterial remodeling in rats with pulmonary hypertension

Takuya Nishikawa, Keita Saku, Takuya Kishi, Takeshi Tohyama, Kohtaro Abe, Yasuhiro Oga, Takahiro Arimura, Takafumi Sakamoto, Keimei Yoshida, Kenji Sunagawa, Hiroyuki Tsutsui

Research output: Contribution to journalArticle

Abstract

Aims: Although pulmonary arterial remolding in pulmonary hypertension (PH) changes the mechanical properties of the pulmonary artery, most clinical studies have focused on static mechanical properties (resistance), and dynamic mechanical properties (compliance) have not attracted much attention. As arterial compliance plays a significant role in determining afterload of the right ventricle, we evaluated how PH changes the dynamic mechanical properties of the pulmonary artery using high-resolution, wideband input impedance (ZPA). We then examined how changes in ZPA account for arterial remodeling. Clarification of the relationship between arterial remodeling and ZPA could help evaluate arterial remodeling according to hemodynamics. Main methods: PH was induced in Sprague–Dawley rats with an injection of Sugen5416 (20 mg/kg) and 3-week exposure to hypoxia (10% oxygen) (SuHx). ZPA was evaluated from pulmonary artery pressure and flow under irregular pacing. Pulmonary histology was examined at baseline and 1, 3, and 8 weeks (n = 7, each) after Sugen5416 injection. Key findings: SuHx progressively increased pulmonary arterial pressure. ZPA findings indicated that SuHx progressively increased resistance (baseline: 9.3 ± 3.6, SuHx1W: 20.7 ± 7.9, SuHx3W: 48.8 ± 6.9, SuHx8W: 62.9 ± 17.8 mm Hg/mL/s, p < 0.01) and decreased compliance (baseline: 11.9 ± 2.1, SuHx1W: 5.3 ± 1.7, SuHx3W: 2.1 ± 0.7, SuHx8W: 1.9 ± 0.6 × 10−3 mL/mm Hg, p < 0.01). The time constant did not significantly change. The progressive reduction in compliance was closely associated with wall thickening of small pulmonary arteries. Significance: The finding that changes in resistance were reciprocally associated with those in compliance indicates that resistant and compliant vessels are anatomically inseparable. The analysis of ZPA might help evaluate arterial remodeling in PH according to hemodynamics.

Original languageEnglish
Pages (from-to)225-232
Number of pages8
JournalLife Sciences
Volume212
DOIs
Publication statusPublished - Nov 1 2018

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Pulmonary arterial input impedance reflects the mechanical properties of pulmonary arterial remodeling in rats with pulmonary hypertension'. Together they form a unique fingerprint.

  • Cite this