Purely organic electroluminescent material realizing 100% conversion from electricity to light

Hironori Kaji, Hajime Suzuki, Tatsuya Fukushima, Katsuyuki Shizu, Katsuaki Suzuki, Shosei Kubo, Takeshi Komino, Hajime Oiwa, Furitsu Suzuki, Atsushi Wakamiya, Yasujiro Murata, Chihaya Adachi

Research output: Contribution to journalArticlepeer-review

507 Citations (Scopus)

Abstract

Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activateddelayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state. The material contains electron-donating diphenylaminocarbazole and electron-accepting triphenyltriazine moieties. The typical trade-off between effective emission and triplet-to-singlet up-conversion is overcome by fine-tuning the highest occupied molecular orbital and lowest unoccupied molecular orbital distributions. The nearly zero singlet-triplet energy gap, smaller than the thermal energy at room temperature, results in an organic light-emitting diode with external quantum efficiency of 29.6%. An external quantum efficiency of 41.5% is obtained when using an out-coupling sheet. The external quantum efficiency is 30.7% even at a high luminance of 3,000 cdm-2.

Original languageEnglish
Article number8476
JournalNature communications
Volume6
DOIs
Publication statusPublished - Oct 19 2015

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Purely organic electroluminescent material realizing 100% conversion from electricity to light'. Together they form a unique fingerprint.

Cite this