Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Evidence for three molecular species of endoglycoceramidase with different specificities.

Makoto Ito, T. Yamagata

Research output: Contribution to journalArticle

112 Citations (Scopus)

Abstract

Two molecular species of endoglycoceramidase (designated as endoglycoceramidases I and II) were purified 32,700 and 43,000 times with overall recoveries of 4.8 and 2.9%, respectively, from a culture fluid of the mutant strain M-750 of Rhodococcus sp., cultivated in the absence of inducers (ganglioside). After being stained with Coomassie Brilliant Blue or a silver-staining solution, each purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 55,900 for endoglycoceramidase I and 58,900 for endoglycoceramidase II, and their pIs were 5.3 and 4.5, respectively. both were capable of hydrolyzing the glucosylceramide linkage of ganglio-type, lacto-type, and globo-type glycosphingolipids to afford intact oligosaccharides and ceramides. Globo-type glycosphingolipids were strongly resistant to hydrolysis by endoglycoceramidase II in comparison with endoglycoceramidase I. Neither could hydrolyze gala-type glycosphingolipids, cerebrosides, sulfatides, glycoglycerolipids, or sphingomyelins. In addition to these two enzymes, the strain M-750 produced a third minor molecular species of endoglycoceramidase designated as endoglycoceramidase III. It was found capable of specifically hydrolyzing the galactosylceramide linkage of gala-type glycosphingolipids that were not hydrolyzable at all by endoglycoceramidases I or II. The molecular weights of the oligosaccharide and ceramide released from asialo GM1, incubated either in normal H2O or H2(18)O with the enzyme, were compared by fast atom bombardment-mass spectrometry. The result clearly indicated that both endoglycoceramidases I and II hydrolyze the glycosidic linkage between the oligosaccharide and ceramide. Thus, a systematic name of the endoglycoceramidase should be glycosyl-N-acyl-sphingosine 1,1-beta-D-glucanohydrolase.

Original languageEnglish
Pages (from-to)9510-9519
Number of pages10
JournalThe Journal of biological chemistry
Volume264
Issue number16
Publication statusPublished - Jan 1 1989
Externally publishedYes

Fingerprint

endoglycoceramidase
Rhodococcus
Glycosphingolipids
Glycoside Hydrolases
Purification
Ceramides
Oligosaccharides
Electrophoresis
Sodium Dodecyl Sulfate
Polyacrylamide Gel Electrophoresis
Enzymes
Molecular Weight
Molecular weight
Cerebrosides
Galactosylceramides
Sulfoglycosphingolipids
Glucosylceramides
Fast Atom Bombardment Mass Spectrometry
Silver Staining

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{9e7cb0a10778448db71f575e7b3fa622,
title = "Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Evidence for three molecular species of endoglycoceramidase with different specificities.",
abstract = "Two molecular species of endoglycoceramidase (designated as endoglycoceramidases I and II) were purified 32,700 and 43,000 times with overall recoveries of 4.8 and 2.9{\%}, respectively, from a culture fluid of the mutant strain M-750 of Rhodococcus sp., cultivated in the absence of inducers (ganglioside). After being stained with Coomassie Brilliant Blue or a silver-staining solution, each purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 55,900 for endoglycoceramidase I and 58,900 for endoglycoceramidase II, and their pIs were 5.3 and 4.5, respectively. both were capable of hydrolyzing the glucosylceramide linkage of ganglio-type, lacto-type, and globo-type glycosphingolipids to afford intact oligosaccharides and ceramides. Globo-type glycosphingolipids were strongly resistant to hydrolysis by endoglycoceramidase II in comparison with endoglycoceramidase I. Neither could hydrolyze gala-type glycosphingolipids, cerebrosides, sulfatides, glycoglycerolipids, or sphingomyelins. In addition to these two enzymes, the strain M-750 produced a third minor molecular species of endoglycoceramidase designated as endoglycoceramidase III. It was found capable of specifically hydrolyzing the galactosylceramide linkage of gala-type glycosphingolipids that were not hydrolyzable at all by endoglycoceramidases I or II. The molecular weights of the oligosaccharide and ceramide released from asialo GM1, incubated either in normal H2O or H2(18)O with the enzyme, were compared by fast atom bombardment-mass spectrometry. The result clearly indicated that both endoglycoceramidases I and II hydrolyze the glycosidic linkage between the oligosaccharide and ceramide. Thus, a systematic name of the endoglycoceramidase should be glycosyl-N-acyl-sphingosine 1,1-beta-D-glucanohydrolase.",
author = "Makoto Ito and T. Yamagata",
year = "1989",
month = "1",
day = "1",
language = "English",
volume = "264",
pages = "9510--9519",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "16",

}

TY - JOUR

T1 - Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Evidence for three molecular species of endoglycoceramidase with different specificities.

AU - Ito, Makoto

AU - Yamagata, T.

PY - 1989/1/1

Y1 - 1989/1/1

N2 - Two molecular species of endoglycoceramidase (designated as endoglycoceramidases I and II) were purified 32,700 and 43,000 times with overall recoveries of 4.8 and 2.9%, respectively, from a culture fluid of the mutant strain M-750 of Rhodococcus sp., cultivated in the absence of inducers (ganglioside). After being stained with Coomassie Brilliant Blue or a silver-staining solution, each purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 55,900 for endoglycoceramidase I and 58,900 for endoglycoceramidase II, and their pIs were 5.3 and 4.5, respectively. both were capable of hydrolyzing the glucosylceramide linkage of ganglio-type, lacto-type, and globo-type glycosphingolipids to afford intact oligosaccharides and ceramides. Globo-type glycosphingolipids were strongly resistant to hydrolysis by endoglycoceramidase II in comparison with endoglycoceramidase I. Neither could hydrolyze gala-type glycosphingolipids, cerebrosides, sulfatides, glycoglycerolipids, or sphingomyelins. In addition to these two enzymes, the strain M-750 produced a third minor molecular species of endoglycoceramidase designated as endoglycoceramidase III. It was found capable of specifically hydrolyzing the galactosylceramide linkage of gala-type glycosphingolipids that were not hydrolyzable at all by endoglycoceramidases I or II. The molecular weights of the oligosaccharide and ceramide released from asialo GM1, incubated either in normal H2O or H2(18)O with the enzyme, were compared by fast atom bombardment-mass spectrometry. The result clearly indicated that both endoglycoceramidases I and II hydrolyze the glycosidic linkage between the oligosaccharide and ceramide. Thus, a systematic name of the endoglycoceramidase should be glycosyl-N-acyl-sphingosine 1,1-beta-D-glucanohydrolase.

AB - Two molecular species of endoglycoceramidase (designated as endoglycoceramidases I and II) were purified 32,700 and 43,000 times with overall recoveries of 4.8 and 2.9%, respectively, from a culture fluid of the mutant strain M-750 of Rhodococcus sp., cultivated in the absence of inducers (ganglioside). After being stained with Coomassie Brilliant Blue or a silver-staining solution, each purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 55,900 for endoglycoceramidase I and 58,900 for endoglycoceramidase II, and their pIs were 5.3 and 4.5, respectively. both were capable of hydrolyzing the glucosylceramide linkage of ganglio-type, lacto-type, and globo-type glycosphingolipids to afford intact oligosaccharides and ceramides. Globo-type glycosphingolipids were strongly resistant to hydrolysis by endoglycoceramidase II in comparison with endoglycoceramidase I. Neither could hydrolyze gala-type glycosphingolipids, cerebrosides, sulfatides, glycoglycerolipids, or sphingomyelins. In addition to these two enzymes, the strain M-750 produced a third minor molecular species of endoglycoceramidase designated as endoglycoceramidase III. It was found capable of specifically hydrolyzing the galactosylceramide linkage of gala-type glycosphingolipids that were not hydrolyzable at all by endoglycoceramidases I or II. The molecular weights of the oligosaccharide and ceramide released from asialo GM1, incubated either in normal H2O or H2(18)O with the enzyme, were compared by fast atom bombardment-mass spectrometry. The result clearly indicated that both endoglycoceramidases I and II hydrolyze the glycosidic linkage between the oligosaccharide and ceramide. Thus, a systematic name of the endoglycoceramidase should be glycosyl-N-acyl-sphingosine 1,1-beta-D-glucanohydrolase.

UR - http://www.scopus.com/inward/record.url?scp=0024962065&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024962065&partnerID=8YFLogxK

M3 - Article

VL - 264

SP - 9510

EP - 9519

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 16

ER -