Pyruvate kinase M2, but not M1, allele maintains immature metabolic states of murine embryonic stem cells

Masamitsu Konno, Hideshi Ishii, Jun Koseki, Nobuhiro Tanuma, Naohiro Nishida, Koichi Kawamoto, Tatsunori Nishimura, Asuka Nakata, Hidetoshi Matsui, Kozou Noguchi, Miyuki Ozaki, Yuko Noguchi, Hiroshi Shima, Noriko Gotoh, Hiroaki Nagano, Yuichiro Doki, Masaki Mori

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The M2 isoform of pyruvate kinase, the final rate-limiting enzyme of aerobic glycolysis, is expressed during embryonic development. In contrast, the M1 isoform is expressed in differentiated cells due to alternative splicing. Here we investigated murine embryonic stem cells (ESCs) with Pkm1 or Pkm2 knock-in alleles. Pkm1 allele knock-in resulted in excessive oxidative phosphorylation and induced the formation of cysteine-thiol disulfide-dependent complexes of forkhead box class-O (FOXO) transcription factors, which resulted in altered endoderm differentiation. In contrast, Pkm2 knock-in induced synthesis of a methylation-donor, S-adenosylmethionine, and increased unsaturated eicosanoid groups, which contributed to the redox control and maintenance of ESC undifferentiated status. Because PKM2 is also a critical enzyme for the cancer-specific Warburg effect, our results demonstrate an important role for the Pkm2 allele in establishing intracellular redox conditions and modulating PKM1-dependent oxidative phosphorylation events to achieve an appropriate ESC differentiation program.

Original languageEnglish
Pages (from-to)63-71
Number of pages9
JournalRegenerative Therapy
Volume1
DOIs
Publication statusPublished - Jun 1 2015

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering
  • Developmental Biology

Fingerprint Dive into the research topics of 'Pyruvate kinase M2, but not M1, allele maintains immature metabolic states of murine embryonic stem cells'. Together they form a unique fingerprint.

Cite this