TY - JOUR
T1 - Quantitative assay of targeted proteome in tomato trichome glandular cells using a large-scale selected reaction monitoring strategy
AU - Takemori, Ayako
AU - Nakashima, Taiken
AU - Ômura, Hisashi
AU - Tanaka, Yuki
AU - Nakata, Keisuke
AU - Nonami, Hiroshi
AU - Takemori, Nobuaki
N1 - Funding Information:
This study was supported by JSPS KAKENHI Grants (16K08937 and 18H04559 to NT). The study was also supported by grants from Ehime University (to NT and HN).
Funding Information:
The tomato resource used in this research was provided by the National BioResource Project (NBRP), MEXT, Japan. We thank Prof Seiichi Fukai (Kagawa University) for helpful discussion. We thank Ayuko Tachibana (Dynacom) and Vagisha Sharma (University of Washington) for their excellent technical assistance.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/4/24
Y1 - 2019/4/24
N2 - Background: Glandular trichomes found in vascular plants are called natural cell factories because they synthesize and store secondary metabolites in glandular cells. To systematically understand the metabolic processes in glandular cells, it is indispensable to analyze cellular proteome dynamics. The conventional proteomics methods based on mass spectrometry have enabled large-scale protein analysis, but require a large number of trichome samples for in-depth analysis and are not suitable for rapid and sensitive quantification of targeted proteins. Results: Here, we present a high-throughput strategy for quantifying targeted proteins in specific trichome glandular cells, using selected reaction monitoring (SRM) assays. The SRM assay platform, targeting proteins in type VI trichome gland cells of tomato as a model system, demonstrated its effectiveness in quantifying multiple proteins from a limited amount of sample. The large-scale SRM assay uses a triple quadrupole mass spectrometer connected online to a nanoflow liquid chromatograph, which accurately measured the expression levels of 221 targeted proteins contained in the glandular cell sample recovered from 100 glandular trichomes within 120 min. Comparative quantitative proteomics using SRM assays of type VI trichome gland cells between different organs (leaves, green fruits, and calyx) revealed specific organ-enriched proteins. Conclusions: We present a targeted proteomics approach using the established SRM assays which enables quantification of proteins of interest with minimum sampling effort. The remarkable success of the SRM assay and its simple experimental workflow will increase proteomics research in glandular trichomes.
AB - Background: Glandular trichomes found in vascular plants are called natural cell factories because they synthesize and store secondary metabolites in glandular cells. To systematically understand the metabolic processes in glandular cells, it is indispensable to analyze cellular proteome dynamics. The conventional proteomics methods based on mass spectrometry have enabled large-scale protein analysis, but require a large number of trichome samples for in-depth analysis and are not suitable for rapid and sensitive quantification of targeted proteins. Results: Here, we present a high-throughput strategy for quantifying targeted proteins in specific trichome glandular cells, using selected reaction monitoring (SRM) assays. The SRM assay platform, targeting proteins in type VI trichome gland cells of tomato as a model system, demonstrated its effectiveness in quantifying multiple proteins from a limited amount of sample. The large-scale SRM assay uses a triple quadrupole mass spectrometer connected online to a nanoflow liquid chromatograph, which accurately measured the expression levels of 221 targeted proteins contained in the glandular cell sample recovered from 100 glandular trichomes within 120 min. Comparative quantitative proteomics using SRM assays of type VI trichome gland cells between different organs (leaves, green fruits, and calyx) revealed specific organ-enriched proteins. Conclusions: We present a targeted proteomics approach using the established SRM assays which enables quantification of proteins of interest with minimum sampling effort. The remarkable success of the SRM assay and its simple experimental workflow will increase proteomics research in glandular trichomes.
UR - http://www.scopus.com/inward/record.url?scp=85066403213&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066403213&partnerID=8YFLogxK
U2 - 10.1186/s13007-019-0427-7
DO - 10.1186/s13007-019-0427-7
M3 - Article
AN - SCOPUS:85066403213
VL - 15
JO - Plant Methods
JF - Plant Methods
SN - 1746-4811
IS - 1
M1 - 40
ER -