Radial basis function-sparse partial least squares for application to brain imaging data

Hisako Yoshida, Atsushi Kawaguchi, Kazuhiko Tsuruya

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


Magnetic resonance imaging (MRI) data is an invaluable tool in brain morphology research. Here, we propose a novel statistical method for investigating the relationship between clinical characteristics and brain morphology based on three-dimensional MRI data via radial basis function-sparse partial least squares (RBF-sPLS). Our data consisted of MRI image intensities for multimillion voxels in a 3D array along with 73 clinical variables. This dataset represents a suitable application of RBF-sPLS because of a potential correlation among voxels as well as among clinical characteristics. Additionally, this method can simultaneously select both effective brain regions and clinical characteristics based on sparse modeling. This is in contrast to existing methods, which consider prespecified brain regions because of the computational difficulties involved in processing high-dimensional data. RBF-sPLS employs dimensionality reduction in order to overcome this obstacle. We have applied RBF-sPLS to a real dataset composed of 102 chronic kidney disease patients, while a comparison study used a simulated dataset. RBF-sPLS identified two brain regions of interest from our patient data: the temporal lobe and the occipital lobe, which are associated with aging and anemia, respectively. Our simulation study suggested that such brain regions are extracted with excellent accuracy using our method.

Original languageEnglish
Article number591032
JournalComputational and Mathematical Methods in Medicine
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Applied Mathematics


Dive into the research topics of 'Radial basis function-sparse partial least squares for application to brain imaging data'. Together they form a unique fingerprint.

Cite this