Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells

Li Wu Qian, Kazuhiro Mizumoto, Naoki Inadome, Eishi Nagai, Norihiro Sato, Kunio Matsumoto, Toshikazu Nakamura, Masao Tanaka

Research output: Contribution to journalArticle

52 Citations (Scopus)

Abstract

Hepatocyte growth factor (HGF) is a stromal-derived cytokine that plays a crucial role in invasion and metastasis of tumor cells through the interaction with HGF receptor, c-Met, which is frequently overexpressed in pancreatic cancer. The present study was designed to investigate the change in HGF receptor and HGF-mediated signaling after irradiation in pancreatic cancer cells. Six cell lines from human pancreatic cancer were included in the study. Gamma-radiation was used for irradiation treatment. The changes in expression levels of c-Met were evaluated by immunoblot and confirmed morphologically by indirect immunofluorescence staining. Whether the resultant alteration in c-Met would cascade as biologically usable signals upon HGF ligation was traced by receptor tyrosine phosphorylation analysis and mitogen activated protein kinase (MAP kinase or MAPK) activity assay. The various biological responses to HGF (including cell proliferation, cell scattering, migration and invasion) were evaluated as well. We also used a 4-kringle antagonist of HGF, NK4, to block the HGF/c-Met signaling pathway. Both immunoblot and immunofluorescent analysis showed moderate increased expression of c-Met in 3 of 6 pancreatic cancer cell lines after irradiation. The actions seemed to be dose-responsible, which began at 3 hr and reached its peak value at 24 hr following irradiation. The radiation-increased expression of c-Met could transform into magnifying receptor tyrosine phosphorylation reaction and MAP kinase activity once the ligand was added, fairly corresponding with alteration in the receptor. Sequentially, the cellular responses to HGF, including scattering and invasion but not proliferation, were enhanced. Also, in the presence of HGF, the elevated receptor could help to recover the radiation-compromised cell migration. A recombinant HGF antagonist, NK4 could effectively block these aberrant effects activated by irradiation both in molecular and cellular levels, thus suggesting the deep involvement of the c-Met/HGF pathway in the enhanced malignant potential after irradiation. These results suggest that radiation may promote HGF-induced malignant biological behaviors of certain pancreatic cancer cells through the upregulated HGF/c-Met signal pathway. Selectively targeted blockade of the HGF/c-Met pathway could help to abolish the enforced malignant behavior of tumor cells by irradiation and therefore may improve the efficacy of radiotherapy for pancreatic cancer.

Original languageEnglish
Pages (from-to)542-549
Number of pages8
JournalInternational Journal of Cancer
Volume104
Issue number5
DOIs
Publication statusPublished - May 1 2003

Fingerprint

Proto-Oncogene Proteins c-met
Hepatocyte Growth Factor
Pancreatic Neoplasms
Phosphotransferases
Phosphorylation
Radiation
Mitogen-Activated Protein Kinase Kinases
Cell Movement
tyrosine receptor
Kringles
Cell Line
Gamma Rays
Indirect Fluorescent Antibody Technique
Cell Communication
Ligation
Signal Transduction
Neoplasms

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this

Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. / Qian, Li Wu; Mizumoto, Kazuhiro; Inadome, Naoki; Nagai, Eishi; Sato, Norihiro; Matsumoto, Kunio; Nakamura, Toshikazu; Tanaka, Masao.

In: International Journal of Cancer, Vol. 104, No. 5, 01.05.2003, p. 542-549.

Research output: Contribution to journalArticle

@article{ee8a8d3b70d14d0a8a36860cb1299b20,
title = "Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells",
abstract = "Hepatocyte growth factor (HGF) is a stromal-derived cytokine that plays a crucial role in invasion and metastasis of tumor cells through the interaction with HGF receptor, c-Met, which is frequently overexpressed in pancreatic cancer. The present study was designed to investigate the change in HGF receptor and HGF-mediated signaling after irradiation in pancreatic cancer cells. Six cell lines from human pancreatic cancer were included in the study. Gamma-radiation was used for irradiation treatment. The changes in expression levels of c-Met were evaluated by immunoblot and confirmed morphologically by indirect immunofluorescence staining. Whether the resultant alteration in c-Met would cascade as biologically usable signals upon HGF ligation was traced by receptor tyrosine phosphorylation analysis and mitogen activated protein kinase (MAP kinase or MAPK) activity assay. The various biological responses to HGF (including cell proliferation, cell scattering, migration and invasion) were evaluated as well. We also used a 4-kringle antagonist of HGF, NK4, to block the HGF/c-Met signaling pathway. Both immunoblot and immunofluorescent analysis showed moderate increased expression of c-Met in 3 of 6 pancreatic cancer cell lines after irradiation. The actions seemed to be dose-responsible, which began at 3 hr and reached its peak value at 24 hr following irradiation. The radiation-increased expression of c-Met could transform into magnifying receptor tyrosine phosphorylation reaction and MAP kinase activity once the ligand was added, fairly corresponding with alteration in the receptor. Sequentially, the cellular responses to HGF, including scattering and invasion but not proliferation, were enhanced. Also, in the presence of HGF, the elevated receptor could help to recover the radiation-compromised cell migration. A recombinant HGF antagonist, NK4 could effectively block these aberrant effects activated by irradiation both in molecular and cellular levels, thus suggesting the deep involvement of the c-Met/HGF pathway in the enhanced malignant potential after irradiation. These results suggest that radiation may promote HGF-induced malignant biological behaviors of certain pancreatic cancer cells through the upregulated HGF/c-Met signal pathway. Selectively targeted blockade of the HGF/c-Met pathway could help to abolish the enforced malignant behavior of tumor cells by irradiation and therefore may improve the efficacy of radiotherapy for pancreatic cancer.",
author = "Qian, {Li Wu} and Kazuhiro Mizumoto and Naoki Inadome and Eishi Nagai and Norihiro Sato and Kunio Matsumoto and Toshikazu Nakamura and Masao Tanaka",
year = "2003",
month = "5",
day = "1",
doi = "10.1002/ijc.10997",
language = "English",
volume = "104",
pages = "542--549",
journal = "International Journal of Cancer",
issn = "0020-7136",
publisher = "Wiley-Liss Inc.",
number = "5",

}

TY - JOUR

T1 - Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells

AU - Qian, Li Wu

AU - Mizumoto, Kazuhiro

AU - Inadome, Naoki

AU - Nagai, Eishi

AU - Sato, Norihiro

AU - Matsumoto, Kunio

AU - Nakamura, Toshikazu

AU - Tanaka, Masao

PY - 2003/5/1

Y1 - 2003/5/1

N2 - Hepatocyte growth factor (HGF) is a stromal-derived cytokine that plays a crucial role in invasion and metastasis of tumor cells through the interaction with HGF receptor, c-Met, which is frequently overexpressed in pancreatic cancer. The present study was designed to investigate the change in HGF receptor and HGF-mediated signaling after irradiation in pancreatic cancer cells. Six cell lines from human pancreatic cancer were included in the study. Gamma-radiation was used for irradiation treatment. The changes in expression levels of c-Met were evaluated by immunoblot and confirmed morphologically by indirect immunofluorescence staining. Whether the resultant alteration in c-Met would cascade as biologically usable signals upon HGF ligation was traced by receptor tyrosine phosphorylation analysis and mitogen activated protein kinase (MAP kinase or MAPK) activity assay. The various biological responses to HGF (including cell proliferation, cell scattering, migration and invasion) were evaluated as well. We also used a 4-kringle antagonist of HGF, NK4, to block the HGF/c-Met signaling pathway. Both immunoblot and immunofluorescent analysis showed moderate increased expression of c-Met in 3 of 6 pancreatic cancer cell lines after irradiation. The actions seemed to be dose-responsible, which began at 3 hr and reached its peak value at 24 hr following irradiation. The radiation-increased expression of c-Met could transform into magnifying receptor tyrosine phosphorylation reaction and MAP kinase activity once the ligand was added, fairly corresponding with alteration in the receptor. Sequentially, the cellular responses to HGF, including scattering and invasion but not proliferation, were enhanced. Also, in the presence of HGF, the elevated receptor could help to recover the radiation-compromised cell migration. A recombinant HGF antagonist, NK4 could effectively block these aberrant effects activated by irradiation both in molecular and cellular levels, thus suggesting the deep involvement of the c-Met/HGF pathway in the enhanced malignant potential after irradiation. These results suggest that radiation may promote HGF-induced malignant biological behaviors of certain pancreatic cancer cells through the upregulated HGF/c-Met signal pathway. Selectively targeted blockade of the HGF/c-Met pathway could help to abolish the enforced malignant behavior of tumor cells by irradiation and therefore may improve the efficacy of radiotherapy for pancreatic cancer.

AB - Hepatocyte growth factor (HGF) is a stromal-derived cytokine that plays a crucial role in invasion and metastasis of tumor cells through the interaction with HGF receptor, c-Met, which is frequently overexpressed in pancreatic cancer. The present study was designed to investigate the change in HGF receptor and HGF-mediated signaling after irradiation in pancreatic cancer cells. Six cell lines from human pancreatic cancer were included in the study. Gamma-radiation was used for irradiation treatment. The changes in expression levels of c-Met were evaluated by immunoblot and confirmed morphologically by indirect immunofluorescence staining. Whether the resultant alteration in c-Met would cascade as biologically usable signals upon HGF ligation was traced by receptor tyrosine phosphorylation analysis and mitogen activated protein kinase (MAP kinase or MAPK) activity assay. The various biological responses to HGF (including cell proliferation, cell scattering, migration and invasion) were evaluated as well. We also used a 4-kringle antagonist of HGF, NK4, to block the HGF/c-Met signaling pathway. Both immunoblot and immunofluorescent analysis showed moderate increased expression of c-Met in 3 of 6 pancreatic cancer cell lines after irradiation. The actions seemed to be dose-responsible, which began at 3 hr and reached its peak value at 24 hr following irradiation. The radiation-increased expression of c-Met could transform into magnifying receptor tyrosine phosphorylation reaction and MAP kinase activity once the ligand was added, fairly corresponding with alteration in the receptor. Sequentially, the cellular responses to HGF, including scattering and invasion but not proliferation, were enhanced. Also, in the presence of HGF, the elevated receptor could help to recover the radiation-compromised cell migration. A recombinant HGF antagonist, NK4 could effectively block these aberrant effects activated by irradiation both in molecular and cellular levels, thus suggesting the deep involvement of the c-Met/HGF pathway in the enhanced malignant potential after irradiation. These results suggest that radiation may promote HGF-induced malignant biological behaviors of certain pancreatic cancer cells through the upregulated HGF/c-Met signal pathway. Selectively targeted blockade of the HGF/c-Met pathway could help to abolish the enforced malignant behavior of tumor cells by irradiation and therefore may improve the efficacy of radiotherapy for pancreatic cancer.

UR - http://www.scopus.com/inward/record.url?scp=0037401065&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037401065&partnerID=8YFLogxK

U2 - 10.1002/ijc.10997

DO - 10.1002/ijc.10997

M3 - Article

VL - 104

SP - 542

EP - 549

JO - International Journal of Cancer

JF - International Journal of Cancer

SN - 0020-7136

IS - 5

ER -